×

Advanced adaptive sonar for mapping applications. (English) Zbl 1202.68435

Summary: An advanced adaptive sonar module is described, capable of being configured to different circumstances and distances according to reflectors found in the environment. Thanks to the sensory distribution, it is possible to identify three basic types of reflector (planes, edges and corners). Furthermore, a heuristic map of the environment is built. The proposed methods have been computationally optimized, and implemented in a real-time system based on a Field-Programmable Gate Array and a Digital Signal Processor. Results have been obtained in the detection, classification and mapping of obstacles; and finally testing has been carried out on a commercial vehicle.

MSC:

68T40 Artificial intelligence for robotics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Borenstein, J., Koren, Y.: Obstacle avoidance with ultrasonics sensors. IEEE J. Robot. Autom. 4(2), 213–218 (1988) · doi:10.1109/56.2085
[2] Everett, H.R.: Sensors for Mobile Robot: Theory and Application. A K Peters Ltd., Wellesley, M. A. (1995)
[3] Song, K.T., Chen, C.H., Huang, C.H.C.: Design and experimental study of an ultrasonic sensor system for lateral collision avoidance at low speeds. In: Proc. 2004 IEEE Intelligent Vehicles Symposium (IV’04), pp. 647–652. Parma, Italy (2004)
[4] Del Castillo, G., Skaar, S., Cardenas, A., Fehr, L.: A sonar approach to obstacle detection for a vision-based autonomous wheelchair. Robot. Auton. Syst. 54(12), 967–981 (2006) · Zbl 05137118 · doi:10.1016/j.robot.2006.05.011
[5] Jorg, K., Berg, M.: Mobile robot sonar sensing with pseudo-random codes. In: Proc. 1998 IEEE Conference on Robotics and Automation (ICRA’98), pp. 2807–2812. Leuven, Belgium (1998)
[6] Kuc, R., Barshan, B.: Bat-like sonar for guiding mobile robots. IEEE Control Syst. 23(2), 4–12 (1992) · doi:10.1109/37.204943
[7] Jiménez, A.R., Seco, F.: Precise localisation of archaeological findings with a new ultrasonic 3D positioning sensor. Sens. Actuators A, 123–4, 224–233 (2005)
[8] Song, K.T., Chen, C.C.: Application of heuristic asymmetric mapping for mobile robot navigation using ultrasonic sensors. J. Intell. Robot. Syst. 17, 243–264 (1996) · Zbl 05473278 · doi:10.1007/BF00339663
[9] Barshan, B., Ayrulu, B.: Performance comparison of four time-of-flight estimation methods for sonar signals. Electron. Lett. 34(16), 1616–1617 (1998) · doi:10.1049/el:19981127
[10] Peremans, H., Audenaert, K., Van Campenhout, J.: A high resolution sensor based on tri-aural perception. IEEE Trans. Robot. Autom. 9(1), 36–48 (1993) · doi:10.1109/70.210793
[11] Borenstein, J., Koren, Y.: Histogramic in-motion mapping for mobile robot obstacle avoidance. IEEE Trans. Robot. Autom. 7(4), 535–539 (1991) · doi:10.1109/70.86083
[12] Chong, K.S., Kleeman, L.: Mobile robot map building for an advanced sonar array and accurate odometry. Int. J. Rob. Res. 18(1), 20–36 (1999)
[13] Elfes, A.: Occupancy grids: a stochastic spatial representation for active robot perception. In: Proc. 6th IEEE Conf. on Uncertainty in AI. Cambridge, USA (1990)
[14] Kleeman, L.: Advanced sonar with velocity compensation. Int. J. Rob. Res. 23(2), 111–126 (2004) · Zbl 05422189 · doi:10.1177/0278364904041321
[15] Kuc, R.: Pseudo-amplitude scan sonar maps. IEEE Trans. Robot. Autom. 17(5), 767–770 (2001) · doi:10.1109/70.964675
[16] Wijk, O., Christensen, H.: Triangulation based fusion of sonar data with application in robot pose tracking. IEEE Trans. Robot. Autom. 16(6), 740–752 (2000) · doi:10.1109/70.897785
[17] Choset, H., Nagatini, K., Lazar, N.A.: The arc-transversal median algorithm: a geometric approach to increasing ultrasonic sensor azimuth accuracy. IEEE Trans. Robot. Autom. 19(3), 513–522 (2003) · doi:10.1109/TRA.2003.810580
[18] Benet, G., Martínez, M., Blanes, F., Pérez, P., Simó, J.E.: Differentiating walls from corners using the amplitude of ultrasonic echoes. Robot. Auton. Syst. 50, 13–25 (2005) · Zbl 02223491 · doi:10.1016/j.robot.2004.07.011
[19] Moita, F., Lopes, A.C., Nunes, U.: A fast firing binaural system for ultrasonic pattern recognition. J. Intell. Robot. Syst. 50(2), 141–162 (2007) · Zbl 05193674 · doi:10.1007/s10846-007-9158-5
[20] Peremans, H.: A maximum likelihood algorithm for solving the correspondence problem in tri-aural perception. In: Proc. 1994 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI’94), pp. 485–492. Las Vegas, USA (1994)
[21] Ureña, J., Mazo, M., García, J.J., Bueno, E., Hernández, A., Hernanz, D.: Low-cost improvement of an ultrasonic sensor and its characterization for map building. In: Proc. IFAC Workshop on Intelligent Components for Vehicles (ICV98), pp. 333–338. Seville, Spain (1998)
[22] Ureña, J., Mazo, M., García, J.J., Hernández, A., Bueno, E.: Classification of reflectors with an ultrasonic sensor for mobile robot applications. Robot. Auton. Syst. 29, 269–279 (1999) · doi:10.1016/S0921-8890(99)00059-7
[23] Hernández, A., Ureña, J., García, J.J., Mazo, M., Herranz, D., Dérutin, J.P., Sérot, J.: Ultrasonic ranging sensor using simultaneous emissions from different transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(12), 1660–1670 (2004) · doi:10.1109/TUFFC.2004.1386683
[24] Álvarez, F.J., Ureña, J., Mazo, M., Hernández, A., García, J.J., De Marziani, C.: High reliability outdoor sonar prototype based on efficent signal coding. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1863–1870 (2006) · doi:10.1109/TUFFC.2006.118
[25] Barshan, B., Kuc, R.: Differentiating sonar reflections from corners and planes by employing an intelligent sensor. IEEE Trans. Pattern Anal. Mach. Intell. 12(6), 560–568 (1990) · Zbl 05111640 · doi:10.1109/34.56192
[26] Kleeman, L., Kuc, R.: Mobile robot sonar for target localization and classification. Int. J. Rob. Res. 14(4), 295–318 (1995) · Zbl 05422191 · doi:10.1177/027836499501400401
[27] Gao, W., Hinders, M.K.: Mobile robot sonar interpretation algorithm for distinguishing trees from poles. Robot. Auton. Syst. 53(2), 89–98 (2005) · doi:10.1016/j.robot.2005.09.003
[28] Lee, C., Yan, L., Lee, S.: Estimation of inclination angle of a planar reflector using sonar sensor. IEEE Sens. J 7(7/8), 1052 (2007) · doi:10.1109/JSEN.2007.891989
[29] Kleeman, L.: Advanced sonar and odometry error modeling for simultaneous localisation and map building. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 699–704. Las Vegas, USA (2003)
[30] Karaman, O., Temeltas, H.: Comparison of different grid based techniques for real-time map building. In: Proc. 2004 IEEE International Conference on Industrial Technology (ICIT’04), vol. 2 (2004)
[31] Noykov, S., Roumenin, C.: Calibration and interface of a Polaroid ultrasonic sensor for mobile robots. Sens. Actuators, A, Phys. 135(1), 169–178 (2007) · doi:10.1016/j.sna.2006.07.006
[32] Leonard, J.J., DurrantWhyte, H.F.: Simultaneous map building and localization for an autonomous mobile robot. In: IEEE/RSJ Int. Workshop on Intelligent Robots and Systems (IROS’91), vol. 3, pp. 1442–1447. Osaka, Japan (1991)
[33] Newman, P., Cole, D., Ho, K.: Outdoor SLAM using visual appearance and laser ranging. In: IEEE International Conference on Robotics and Automation (ICRA’06). Orlando, USA (2006)
[34] Davison, A.J., David, W.M.: Simultaneous localization and map-building using active vision. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 865–880 (2002) · Zbl 05111765 · doi:10.1109/TPAMI.2002.1017615
[35] Audenaert, K., Peremans, H., Kawahara, Y., Van Campenhout, J.: Accurate ranging of multiple objects using ultrasonic sensors. In: Proc. IEEE Int. Conf. on Robotics and Automation (ICRA’05), pp. 1733–1738. Nice, France (1992)
[36] Graham, P., Nelson, B.: Frequency-domain sonar processing in FPGAs and DSPs. In: Proc. IEEE Symposium on FPGAs for Custom Computing Machines (FCCM’98), pp. 306–307. Napa Valley CA, USA (1998)
[37] Nelson, B.E.: Configurable computing and sonar processing–architectures and implementations. In: Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 56–60. Pacific Grove CA, USA (2001)
[38] Clarke, C., Qiang, L., Peremans, H., Hernández, A.: FPGA implementation of a neuromimetic cochlea for a bionic bat head. In: Proc. 14th International Conference on Field-Programmable Logic and its applications (FPL’04), pp. 1073–1075. Antwerp, Belgium (2004)
[39] Lee, B.B., Furgason, E.S.: High speed digital Golay code flaw detection system. Ultrasonics 21(4), 153–161 (1983) · doi:10.1016/0041-624X(83)90070-7
[40] Budisin, S.Z.: Efficient pulse compressor for Golay complementary sequences. Electron. Lett. 27(3), 219–220 (1991) · doi:10.1049/el:19910142
[41] Popovic, B.M.: Efficient Golay correlator. IEE Electron. Lett. 35(17), 1427–1428 (1999) · doi:10.1049/el:19991019
[42] Polaroid Corporation: 600 series. Instrument grade electrostatic transducers. Technical specification (1999)
[43] Sundance Multiprocessor Technology Ltd.: SMT320v4, SMT358, SMT335-375 User guide. User manual (2003)
[44] Hernández, A., Urena, J., Mazo, M., Jiménez, A., Garcá, J.J., Álvarez, F.J., De Marziani, C., Ochoa, A.M.: A comparison of computing architectures for ultrasonic signal processing. In: Proc. IEEE Int. Symposium on Intelligent Signal Processing (WISP’05). Faro, Portugal (2005)
[45] Robosoft: ROBOSOFT’s intelligent electric vehicles. Product specification (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.