×

zbMATH — the first resource for mathematics

The Beverton-Holt model with periodic and conditional harvesting. (English) Zbl 1342.91025
Summary: In this theoretical study, we investigate the effect of different harvesting strategies on the discrete Beverton-Holt model in a deterministic environment. In particular, we make a comparison between the constant, periodic and conditional harvesting strategies. We find that for large initial populations, constant harvest is more beneficial to both the population and the maximum sustainable yield. However, periodic harvest has a short-term advantage when the initial population is low, and conditional harvest has the advantage of lowering the risk of depletion or extinction. Also, we investigate the periodic character under each strategy and show that periodic harvesting drives population cycles to be multiples (period-wise) of the harvesting period.

MSC:
91B76 Environmental economics (natural resource models, harvesting, pollution, etc.)
92D25 Population dynamics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/j.jmaa.2005.04.059 · Zbl 1125.39001 · doi:10.1016/j.jmaa.2005.04.059
[2] Barringer F., Collapse of Salmon Stocks Endangers Pacific Fishery (2008)
[3] DOI: 10.1126/science.197.4302.463 · doi:10.1126/science.197.4302.463
[4] DOI: 10.1080/10236190410001726421 · Zbl 1068.39005 · doi:10.1080/10236190410001726421
[5] Beverton R. J.H., On the Dynamics of Exploited Fish Populations (2004)
[6] DOI: 10.1016/0040-5809(75)90036-2 · Zbl 0313.92012 · doi:10.1016/0040-5809(75)90036-2
[7] DOI: 10.1111/j.1939-7445.2003.tb00113.x · Zbl 1067.92056 · doi:10.1111/j.1939-7445.2003.tb00113.x
[8] DOI: 10.1016/S0304-3800(99)00190-8 · doi:10.1016/S0304-3800(99)00190-8
[9] Clark C. W., Mathematical Bioeconomics: the Optimal Management of Renewable Resources (1990) · Zbl 0712.90018
[10] DOI: 10.1577/M03-020 · doi:10.1577/M03-020
[11] DOI: 10.1016/j.mbs.2006.03.023 · Zbl 1106.92069 · doi:10.1016/j.mbs.2006.03.023
[12] Cull P., Difference Equations: from Rabbits to Chaos (2004) · Zbl 1085.39002
[13] DOI: 10.1080/10236190108808308 · Zbl 1002.39003 · doi:10.1080/10236190108808308
[14] DOI: 10.1080/1023619021000053980 · Zbl 1023.39013 · doi:10.1080/1023619021000053980
[15] DOI: 10.1016/j.nonrwa.2006.01.001 · Zbl 1152.34333 · doi:10.1016/j.nonrwa.2006.01.001
[16] DOI: 10.1080/10236190412331335418 · Zbl 1084.39005 · doi:10.1080/10236190412331335418
[17] DOI: 10.1016/j.mbs.2005.12.021 · Zbl 1105.39006 · doi:10.1016/j.mbs.2005.12.021
[18] DOI: 10.1016/S0025-5564(98)10024-X · Zbl 0940.92030 · doi:10.1016/S0025-5564(98)10024-X
[19] Grove E. A., Comm. Appl. Nonlinear Anal. 14 pp 33– (2007)
[20] DOI: 10.1641/0006-3568(2004)054[0297:MFPCCF]2.0.CO;2 · doi:10.1641/0006-3568(2004)054[0297:MFPCCF]2.0.CO;2
[21] DOI: 10.1080/10236190412331335463 · Zbl 1084.39007 · doi:10.1080/10236190412331335463
[22] Kocic V., Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Math. Appl 256 (1993) · Zbl 0787.39001 · doi:10.1007/978-94-017-1703-8
[23] DOI: 10.1201/9781420035384 · doi:10.1201/9781420035384
[24] DOI: 10.1201/9781420035353 · doi:10.1201/9781420035353
[25] DOI: 10.1890/0012-9658(1997)078[1341:THFSOF]2.0.CO;2 · doi:10.1890/0012-9658(1997)078[1341:THFSOF]2.0.CO;2
[26] DOI: 10.1890/1051-0761(1997)007[0091:WDFSCT]2.0.CO;2 · doi:10.1890/1051-0761(1997)007[0091:WDFSCT]2.0.CO;2
[27] DOI: 10.1007/s002850000070 · Zbl 0977.92032 · doi:10.1007/s002850000070
[28] DOI: 10.1073/pnas.93.4.1504 · Zbl 0851.92021 · doi:10.1073/pnas.93.4.1504
[29] DOI: 10.1016/j.na.2006.02.049 · Zbl 1119.39011 · doi:10.1016/j.na.2006.02.049
[30] DOI: 10.1007/s00285-003-0243-5 · Zbl 1058.92051 · doi:10.1007/s00285-003-0243-5
[31] US Census Bureau. 2007;World Population Information, available athttp://www.census.gov/ipc/wwww/idp/worldpopinfo.html. (Accessed 20 Febraury 2008.)
[32] DOI: 10.1007/s00285-004-0303-5 · Zbl 1066.92057 · doi:10.1007/s00285-004-0303-5
[33] DOI: 10.1016/S1468-1218(02)00084-6 · Zbl 1011.92052 · doi:10.1016/S1468-1218(02)00084-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.