zbMATH — the first resource for mathematics

The dynamics of some discrete models with delay under the effect of constant yield harvesting. (English) Zbl 1341.92056
Summary: In this paper, we study the dynamics of population models of the form \(x_{n+1}=x_nf(x_{n-1})\) under the effect of constant yield harvesting. Results concerning stability, boundedness, persistence and oscillations of solutions are given. Also, some regions of persistence and extinction are characterized. Pielous equation was considered as an example on these models, and a connection with a Lyness type equation has been established at certain harvesting level, which is used to give an explicit description of a persistent set.

92D25 Population dynamics (general)
91B76 Environmental economics (natural resource models, harvesting, pollution, etc.)
39A21 Oscillation theory for difference equations
39A22 Growth, boundedness, comparison of solutions to difference equations
39A30 Stability theory for difference equations
Full Text: DOI
[1] AlSharawi, Z.; Rhouma, M., The beverton-Holt model with periodic and conditional harvesting, J Biol Dyn, 3, 463-478, (2009) · Zbl 1342.91025
[2] AlSharawi, Z.; Rhouma, M., The discrete beverton-Holt model with periodic harvesting in a periodically fluctuating environment, Adv Difference Equ, (2010), Article ID 215875 · Zbl 1184.92047
[3] AlSharawi, Z.; Rhouma, M., Coexistence and extinction in a competitive exclusion Leslie/gower model with harvesting and stocking, J Difference Equ Appl, 15, 1031-1053, (2009) · Zbl 1176.92050
[4] Barbeau, E.; Gelbord, B.; Tanny, S., Periodicities of solutions of the generalized lyness recursion, J Difference Equ Appl, 1, 291-306, (1995) · Zbl 0856.39009
[5] Beverton, R.; Holt, S. J., On the dynamics of exploited fish populations, (2004), The Blackburn Press New Jersey
[6] Bischi, G. I.; Lamantia, F., Harvesting dynamics in protected and unprotected areas, J Econ Behaviour Org, 62, 348-370, (2007)
[7] Bischi, G. I.; Lamantia, F.; Sbragia, L., Strategic interaction and imitation dynamics in patch differentiated exploitation of fisheries, Ecol Complexity, 6, 353-362, (2009)
[8] Brannstrom, A.; Sumpter, D. J.T., The role of competition and clustering in population dynamics, Proc R Soc B, 272, 2065-2072, (2005)
[9] Camouzis, E.; Ladas, G., Dynamics of third-order rational difference equations with open problems and conjectures, (2008), Chapman & Hall New York · Zbl 1133.39301
[10] Eskolaa, H.; Geritz, S., On the mechanistic derivation of various discrete-time population models, Bull Math Biol, 69, 329-346, (2007) · Zbl 1133.92355
[11] Feuer, J.; Janowski, E. J.; Ladas, G., Lyness-type equations in the third quadrant, Nonlinear Anal, 30, 1183-1189, (1997) · Zbl 0893.39004
[12] Gardini, L.; Bischi, G. I.; Mira, C., Invariant curves and focal points in a lyness iterative process, Int J Bifurcation Chaos, 13, 1841-1852, (2003) · Zbl 1063.39016
[13] Geritz, S.; Kisdi, E., On the mechanistic underpinning of discrete-time population models with complex dynamics, J Theor Biol, 228, 261-269, (2004)
[14] Getz, W. M.; Haight, R. G., Population harvesting, (1989), Princeton University Press New Jersey
[15] Gu, En-Guo; Tian, Fan, Complex dynamics analysis for a duopoly model of common fishery resource, Nonlinear Dyn, 61, 579-590, (2010) · Zbl 1204.91068
[16] Hutson, V.; Moran, W., Persistence of species obeying difference equations, J Math Biol, 15, 203-213, (1982) · Zbl 0495.92015
[17] Kocic, V. L.; Ladas, G., Global asymptotic behavior of nonlinear difference equations of higher order with applications, (1993), Kluwer Academic Publishers Dordrecht · Zbl 0787.39001
[18] Kocic, V. L.; Ladas, G.; Rodrigues, I. W., On rational recursive sequences, J Math Anal Appl, 173, 127-157, (1993) · Zbl 0777.39002
[19] Kot, M., Elements of mathematical ecology, (2003), Cambridge University Press UK · Zbl 1060.92058
[20] Kulenovic, M. R.S.; Ladas, G., Dynamics of second order rational difference equations; with open problems and applications, (2001), Chapman & Hall/CRC Press
[21] Kuruklis, S. A.; Ladas, G., Oscillations and global attractivity in a discrete delay logistic model, Quart Appl Math, 1, 227-233, (1992) · Zbl 0799.39004
[22] Leven, S. A.; May, R. M., A note on difference delay equations, Theor Popul Biol, 9, 178-187, (1976) · Zbl 0338.92021
[23] Levhari, D.; Mirman, L. J., The great fish war: an example using a dynamics gournot-Nash solution, Bell J Econ, 11, 322-334, (1980)
[24] Lyness, R. C., Note 1581, Math Gazette, 26, 62, (1942)
[25] Lyness, R. C., Note 1847, Math Gazette, 29, 231-233, (1945)
[26] Lyness, R. C., Note 2952, Math Gazette, 45, 207-209, (1961)
[27] May, R. M., Simple mathematical models with very complicated dynamics, Nature, 261, 459-467, (1976) · Zbl 1369.37088
[28] Pielou, E. C., Population and community ecology, (1974), Gordon and Breach New York · Zbl 0349.92024
[29] Ricker, W. E., Stock and recruitment, J Fisheries Res Board Can, 11, 559-623, (1954)
[30] Beddington, J. R.; May, R. M., Harvesting natural population in a randomly fluctuating environment, Science, 197, 463-465, (1977)
[31] Brauer, F.; Sanchez, D. A., Constant rate population harvesting: equilibrium and stability, Theor Popul Biol, 8, 12-30, (1975) · Zbl 0313.92012
[32] Brauer, F.; Sanchez, D. A., Periodic environments and periodic harvesting, Nat Res Model, 16, 233-244, (2003) · Zbl 1067.92056
[33] Clark, C. W., Mathematical bioeconomics, (1990), John Wiley and Sons Inc New York, NY, USA · Zbl 0712.90018
[34] Fan, M.; Wang, K., Optimal harvesting policy for single population with periodic coefficients, Math Biosci, 152, 165-178, (1998) · Zbl 0940.92030
[35] Tang, S.; Chen, L., The effect of seasonal harvesting on stage-structured population models, J Math Biol, 48, 357-374, (2004) · Zbl 1058.92051
[36] Xu, C.; Boyce, M. S.; Daley, D. J., Harvesting in seasonal environments, J Math Biol, 50, 663-682, (2005) · Zbl 1066.92057
[37] Zhang, X.; Shuai, Z.; Wang, K., Optimal impulsive harvesting policy for single population, Nonlinear Anal: Real World Appl, 40, 639-651, (2003) · Zbl 1011.92052
[38] Schriber, S., Chaos and population disappearances in simple ecological models, J Math Biol, 42, 239-260, (2001) · Zbl 0977.92032
[39] Walters, C. J.; Korman, J., Linking recruitment to trophic factors: revisiting the beverton-Holt recruitment model from a life history and multispecies perspective, Rev Fish Biol Fisheries, 9, 187-202, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.