×

zbMATH — the first resource for mathematics

Limitations of inclusive fitness. (English) Zbl 1355.91057
Summary: Until recently, inclusive fitness has been widely accepted as a general method to explain the evolution of social behavior. Affirming and expanding earlier criticism, we demonstrate that inclusive fitness is instead a limited concept, which exists only for a small subset of evolutionary processes. Inclusive fitness assumes that personal fitness is the sum of additive components caused by individual actions. This assumption does not hold for the majority of evolutionary processes or scenarios. To sidestep this limitation, inclusive fitness theorists have proposed a method using linear regression. On the basis of this method, it is claimed that inclusive fitness theory (i) predicts the direction of allele frequency changes, (ii) reveals the reasons for these changes, (iii) is as general as natural selection, and (iv) provides a universal design principle for evolution. In this paper we evaluate these claims, and show that all of them are unfounded. If the objective is to analyze whether mutations that modify social behavior are favored or opposed by natural selection, then no aspect of inclusive fitness theory is needed.

MSC:
91D10 Models of societies, social and urban evolution
91D30 Social networks; opinion dynamics
92C50 Medical applications (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hamilton, Journal of Theoretical Biology 7 (1) pp 1– (1964) · doi:10.1016/0022-5193(64)90038-4
[2] Hamilton, Journal of Theoretical Biology 7 (1) pp 17– (1964) · doi:10.1016/0022-5193(64)90039-6
[3] Evolution 46 pp 376– (1992) · doi:10.2307/2409858
[4] Gardner, Journal of evolutionary biology 24 (5) pp 1020– (2011) · doi:10.1111/j.1420-9101.2011.02236.x
[5] Taylor, Journal of Theoretical Biology 180 (1) pp 27– (1996) · doi:10.1006/jtbi.1996.0075
[6] Theoretical population biology 84 pp 46– (2013) · Zbl 1275.92082 · doi:10.1016/j.tpb.2012.11.007
[7] Grafen, Journal of Theoretical Biology 238 (3) pp 541– (2006) · Zbl 1101.92031 · doi:10.1016/j.jtbi.2005.06.009
[8] Grafen, Journal of evolutionary biology 20 (4) pp 1243– (2007) · doi:10.1111/j.1420-9101.2007.01321.x
[9] Journal of evolutionary biology 26 pp 1151– (2013) · doi:10.1111/jeb.12131
[10] van Veelen, Journal of Theoretical Biology 246 (3) pp 551– (2007) · doi:10.1016/j.jtbi.2007.01.001
[11] Current biology : CB 23 pp R577– (2013) · doi:10.1016/j.cub.2013.05.031
[12] Gore, Nature; Physical Science (London) 459 (7244) pp 253– (2009) · doi:10.1038/nature07921
[13] Chuang, Molecular Systems Biology 6 (1) pp 398– (2010) · doi:10.1038/msb.2010.57
[14] PLoS biology 8 pp e1000486– (2010) · doi:10.1371/journal.pbio.1000486
[15] Nature; Physical Science (London) 318 pp 310– (1985)
[16] Wild, Journal of Theoretical Biology 247 (2) pp 382– (2007) · doi:10.1016/j.jtbi.2007.03.015
[17] Nowak, Nature; Physical Science (London) 466 (7310) pp 1057– (2010) · doi:10.1038/nature09205
[18] Abbot, Nature; Physical Science (London) 471 (7339) pp E1– (2011) · doi:10.1038/nature09831
[19] Hamilton, Nature; Physical Science (London) 228 (5277) pp 1218– (1970) · doi:10.1038/2281218a0
[20] OXFORD SURVEYS EVOL BIOL 2 pp 28– (1985)
[21] Rousset, Journal of evolutionary biology 24 (6) pp 1386– (2011) · doi:10.1111/j.1420-9101.2011.02251.x
[22] Marshall, Trends in Ecology & Evolution 26 (7) pp 325– (2011) · doi:10.1016/j.tree.2011.04.008
[23] PNAS 108 (Supplement_2) pp 10792– (2011) · doi:10.1073/pnas.1100298108
[24] van Veelen, Journal of Theoretical Biology 299 pp 64– (2012) · Zbl 1337.92156 · doi:10.1016/j.jtbi.2011.07.025
[25] Price, Nature; Physical Science (London) 227 (5257) pp 520– (1970) · doi:10.1038/227520a0
[26] van Veelen, Journal of Theoretical Biology 237 (4) pp 412– (2005) · doi:10.1016/j.jtbi.2005.04.026
[27] West, Journal of evolutionary biology 20 (2) pp 415– (2007) · doi:10.1111/j.1420-9101.2006.01258.x
[28] Damore, Journal of Theoretical Biology 299 pp 31– (2012) · Zbl 1337.92136 · doi:10.1016/j.jtbi.2011.03.008
[29] Simon, Journal of Theoretical Biology 299 pp 55– (2012) · Zbl 1337.91065 · doi:10.1016/j.jtbi.2011.07.014
[30] Kerr, Nature; Physical Science (London) 418 (6894) pp 171– (2002) · doi:10.1038/nature00823
[31] PLoS biology 11 pp e1001547– (2013) · doi:10.1371/journal.pbio.1001547
[32] Tarnita, Journal of Theoretical Biology 259 (3) pp 570– (2009) · Zbl 1402.91064 · doi:10.1016/j.jtbi.2009.03.035
[33] Nowak, Philosophical Transactions of the Royal Society B: Biological Sciences 365 (1537) pp 19– (2010) · doi:10.1098/rstb.2009.0215
[34] PNAS 108 (6) pp 2334– (2011) · doi:10.1073/pnas.1016008108
[35] Evolution 67 pp 1561– (2013) · doi:10.1111/j.1558-5646.2012.01835.x
[36] Journal of mathematical biology 36 pp 349– (1998) · Zbl 0909.92023 · doi:10.1007/s002850050104
[37] Diekmann, Journal of mathematical biology 43 (2) pp 157– (2001) · Zbl 1028.92019 · doi:10.1007/s002850170002
[38] Durinx, Journal of mathematical biology 56 (5) pp 673– (2008) · Zbl 1146.92027 · doi:10.1007/s00285-007-0134-2
[39] Champagnat, Theoretical population biology 69 (3) pp 297– (2006) · Zbl 1118.92039 · doi:10.1016/j.tpb.2005.10.004
[40] 181 pp E139– (2013) · doi:10.1086/670192
[41] Cavalli-Sforza, Theoretical population biology 14 (2) pp 268– (1978) · Zbl 0432.92017 · doi:10.1016/0040-5809(78)90028-X
[42] Karlin, Proceedings of the Royal Society B: Biological Sciences 219 (1216) pp 327– (1983) · Zbl 0555.92012 · doi:10.1098/rspb.1983.0077
[43] Matessi, PNAS 81 (6) pp 1754– (1984) · doi:10.1073/pnas.81.6.1754
[44] EVOL ECOL 6 pp 352– (1992) · doi:10.1007/BF02270971
[45] Taylor, Nature; Physical Science (London) 447 (7143) pp 469– (2007) · doi:10.1038/nature05784
[46] Journal of evolutionary biology 13 pp 814– (2000) · doi:10.1046/j.1420-9101.2000.00219.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.