×

zbMATH — the first resource for mathematics

Hamilton’s rule. (English) Zbl 1369.92085
Summary: This paper reviews and addresses a variety of issues relating to inclusive fitness. The main question is: are there limits to the generality of inclusive fitness, and if so, what are the perimeters of the domain within which inclusive fitness works? This question is addressed using two well-known tools from evolutionary theory: the replicator dynamics, and adaptive dynamics. Both are combined with population structure. How generally Hamilton’s rule applies depends on how costs and benefits are defined. We therefore consider costs and benefits following from S. Karlin and C. Matessi’s [Proc. R. Soc. Lond., Ser. B 219, 327–353 (1983; Zbl 0555.92012)] “counterfactual method”, and costs and benefits as defined by the “regression method” [A. Gardner et al., “The genetical theory of kin selection”, J. Evol. Biol. 24, No. 5, 1020–1043 (2011; doi:10.1111/j.1420-9101.2011.02236.x)]. With the latter definition of costs and benefits, Hamilton’s rule always indicates the direction of selection correctly, and with the former it does not. How these two definitions can meaningfully be interpreted is also discussed. We also consider cases where the qualitative claim that relatedness fosters cooperation holds, even if Hamilton’s rule as a quantitative prediction does not.
We furthermore find out what the relation is between Hamilton’s rule and Fisher’s fundamental theorem of natural selection. We also consider cancellation effects – which is the most important deepening of our understanding of when altruism is selected for. Finally we also explore the remarkable (im)possibilities for empirical testing with either definition of costs and benefits in Hamilton’s rule.

MSC:
92D15 Problems related to evolution
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abbot, P., Inclusive fitness theory and eusociality, Nature, 471, E1-E4, (2010)
[2] Ajar, Analysis of disruptive selection in subdivided populations, BMC Evolutionary Biology, 3, 22, (2003)
[3] Allen, B.; Nowak, M. A.; Dieckmann, U., Adaptive dynamics with interaction structure, Am. Nat., 181, 6, E139-E163, (2013)
[4] Allen, B.; Nowak, M. A., Evolutionary shift dynamics on a cycle, J. Theor. Biol., 311, 28-39, (2012) · Zbl 1337.92166
[5] Allen, B.; Nowak, M. A., Games among relatives revisited, J. Theor. Biol., 378, 103-116, (2015) · Zbl 1343.91004
[6] Allen, B.; Nowak, M. A.; Wilson, E. O., Limitations of inclusive fitness, Proc. Natl. Acad. Sci. USA, 110, 50, 20135-20139, (2013) · Zbl 1355.91057
[7] Archetti, M.; Scheuring, I., Coexistence of cooperation and defection in public goods games, Evolution, 65, 1140-1148, (2011)
[8] Archetti, M.; Scheuring, I., Reviewgame theory of public goods in one-shot social dilemmas without assortment, J. Theor. Biol., 299, 9-20, (2012) · Zbl 1337.91041
[9] Axelrod, R.; Hamilton, W. D., The evolution of cooperation, Science, 211, 1390-1396, (1981) · Zbl 1225.92037
[10] Barton, N. H.; Etheridge, A. H., The relation between reproductive value and genetic contribution, Genetics, 188, 4, 953-973, (2011)
[11] Barton, N. H.; Polechová, J., The limitations of adaptive dynamics as a model of evolution, J. Evol. Biol., 18, 1186-1190, (2005)
[12] Bendor, J.; Swistak, P., Types of evolutionary stability and the problem of cooperation, Proc. Natl. Acad. Sci. USA, 92, 360-3596, (1995) · Zbl 0820.92016
[13] Benford, F. A., Fisher’s theory of the sex ratio applied to social hymenoptera, J. Theor. Biol., 72, 701-727, (1978)
[14] Binmore, K. G.; Samuelson, L., Evolutionary stability in repeated games played by finite automata, J. Econ. Theory, 57, 278-305, (1992) · Zbl 0767.90095
[15] Birch, J., Hamilton’s rule and its discontents, Brit. J. Phil. Sci., 65, 381-411, (2014)
[16] Birch, J.; Okasha, S., Kin selection and its critics, BioScience, 65, 1, 22-32, (2015)
[17] Boyd, R., Density-dependent mortality and the evolution of social interactions, Anim. Beh., 30, 972-982, (1982)
[18] Boyd, R.; Lorberbaum, J. P., No pure strategy is stable in the repeated Prisoner’s dilemma game, Nature, 327, 58-59, (1987)
[19] Bourke, A. F.G., Sociality and kin selection in insects, (Krebs, J. R.; Davies, N. B., Behavioural Ecology: An Evolutionary Approach, (1997), Blackwell Science Ltd Oxford, UK), 203-227
[20] Bourke, A. F.G., Hamilton’s rule and the causes of social evolution, Phil. Trans. R. Soc. B., 369, 20130362, (2014)
[21] Brännström, Å.; Johansson, J.; von Festenberg, N., The Hitchhiker’s guide to adaptive dynamics, Games, 4, 3, 304-328, (2013) · Zbl 1314.91030
[22] Castilloux, A.-M.; Lessard, S., The fundamental theorem of natural selection in Ewens’ sense (case of many loci), Theor. Popul. Biol., 48, 306-315, (1995) · Zbl 0840.92015
[23] Champagnat, N.; Ferrière, R.; Ben Arous, G., The canonical equation of adaptive dynamicsa mathematical view, Selection, 2, 73-83, (2001)
[24] Champagnat, N.; Ferrière, R.; Méléard, S., Unifying evolutionary dynamicsfrom individual stochastic processes to macroscopic models, Theor. Popul. Biol., 69, 297-321, (2006) · Zbl 1118.92039
[25] Champagnat, N.; Lambert, A., Evolution of discrete populations and the canonical diffusion of adaptive dynamics, Ann. Appl. Probab., 17, 1, 102-155, (2007) · Zbl 1128.92023
[26] Champagnat, N.; Méléard, S., Invasion and adaptive evolution for individual-based spatially structured populations, J. Math. Biol., 55, 147-188, (2007) · Zbl 1129.60080
[27] Cooney, D., Allen, B., Veller, C., 2016. Assortment and the evolution of cooperation in a Moran process with exponential fitness. J. Theor. Biol. 409, 38–46. · Zbl 1405.91035
[28] Cooper, D. J., Supergames played by finite automata with finite costs of complexity in an evolutionary setting, J. Econ. Theory, 68, 1, 266-275, (1996) · Zbl 0849.90137
[29] Charlesworth, B., Evolution in age-structured populations, (1980), Cambridge University Press Cambridge · Zbl 0449.92011
[30] Darwin, C., On the origin of species by means of natural selection, (1859), John Murray (Reprinted in 1964 by Harvard University Press) London
[31] Dawkins, R., The selfish gene, (1976), Oxford University Press Oxford
[32] Dieckmann, U.; Law, R., The dynamical theory of coevolutiona derivation from stochastic ecological processes, J. Math. Biol., 34, 579-612, (1996) · Zbl 0845.92013
[33] Dercole, F., Rinaldi, S,. 2008. Analysis of evolutionary processes: the adaptive dynamics approach and its applications. Princeton: Princeton University Press, 2008. · Zbl 1305.92001
[34] Doebeli, M.; Hauert, C., Limits to Hamilton’s rule, J. Evol. Biol., 19, 5, 1386-1388, (2006)
[35] Doebeli, M.; Hauert, C.; Killingback, T., The evolutionary origin of cooperators and defectors, Science, 306, 859-862, (2004)
[36] Ellison, G., 1993. Learning, local interaction, and coordination. Econometrica 61, 1047–1071. · Zbl 0802.90143
[37] Emlen, S. T.; Wrege, P. H., A test of alternate hypotheses for helping behavior in white-fronted bee-eaters of kenya, Behav. Ecol. Sociobiol., 25, 303-319, (1989)
[38] Eshel, I.; Motro, U., Kin selection and strong evolutionary stability of mutual help, Theor. Pop. Biol., 19, 420-433, (1981) · Zbl 0473.92014
[39] Eshel, I., Samuelson, L. Shaked, A. 1998. Altruists, egoists and hooligans in a local interaction model. American Economic Review 88, 157–179.
[40] Ewens, W. J., An interpretation and proof of the fundamental theorem of natural selection, Theor. Pop. Biol., 36, 2, 167-180, (1989) · Zbl 0702.92012
[41] Ewens, W. J., An optimizing principle of natural selection in evolutionary population genetics, Theor. Pop. Biol., 42, 3, 333-346, (1992) · Zbl 0768.92018
[42] Ewens, W.J., Lessard, S., 2015. On the interpretation and relevance of the Fundamental Theorem of Natural Selection. Theor. Pop. Biol. 104, 59–67. · Zbl 1342.92137
[43] Fisher, R. A., The genetical theory of natural selection, (1930), Oxford University Press (Clarendon) London, Reprinted and revised 1958 · JFM 56.1106.13
[44] Fletcher, J.. A.; Doebeli, M., A simple and general explanation for the evolution of altruism, Proc. R. Soc. B, 276, 13-19, (2009)
[45] Foster, K. R.; Wenseleers, T.; Ratnieks, F. L.W., Kin selection is the key to altruism, Trends Ecol. E, 21, 2, 57-60, (2006)
[46] Foster, K. R.; Wenseleers, T.; Ratnieks, F. L.W.; Queller, D. C., There is nothing wrong with inclusive fitness, Trends Ecol. E, 21, 11, 599-600, (2006)
[47] Frank, S. A., The genetic value of sons and daughters, Heredity, 56, 351-354, (1986)
[48] Frank, S.A., 1998. Foundations of Social Evolution. Princeton: Princeton University Press, Princeton.
[49] Friedman, J., A noncooperative equilibrium for supergames, Rev. Econ. Stud., 38, 1-12, (1971) · Zbl 0274.90072
[50] Fudenberg, D.; Maskin, E., The folk theorem in repeated games with discounting or with incomplete information, Econometrica, 54, 533-554, (1986) · Zbl 0615.90099
[51] Fudenberg, D.; Maskin, E., Evolution and cooperation in noisy repeated games, Am. Econ. Rev, 80, 2, 274-279, (1990)
[52] Le Galliard, J.-. F.; Ferrière, R.; Dieckmann, U., The adaptive dynamics of altruism in spatially heterogeneous populations, Evolution, 57, 1-17, (2003)
[53] Le Galliard, J.-. F.; Ferrière, R.; Dieckmann, U., Adaptive evolution of social traitsorigin, trajectories, and correlations of altruism and mobility, Am. Nat., 165, 2, 206-224, (2005)
[54] Gadagkar, R., The social biology of ropalidia marginata: towards understanding the evolution of eusociality, (2001), Harvard University Press Cambridge, MA
[55] García, J.; van Veelen, M., In and out of equilibrium ievolution of strategies in repeated games with discounting, J. Econ. Theory, 161, 161-189, (2016) · Zbl 1369.91019
[56] Gardner, A.; West, S. A.; Wild, G., The genetical theory of kin selection, J. Evol. Biol., 24, 1020-1043, (2011)
[57] Gokhale, C. S.; Traulsen, A., Evolutionary games in the multiverse, Proc. Natl. Acad. Sci. USA, 107, 5500-5504, (2010)
[58] Gokhale, C. S.; Traulsen, A., Mutation-selection equilibrium in evolutionary games with multiple players and multiple strategies, J. Theor. Biol., 283, 180-191, (2011) · Zbl 1397.91064
[59] Gorrell, J. C.; McAdam, A. G.; Coltman, D. W.; Humphries, M. M.; Boutin, S., Adopting kin enhances inclusive fitness in asocial red squirrels, Nat. Commun., 1, 22, (2010)
[60] Geritz, S. A.H.; Kisdi, É.; Meszéna, G.; Metz, J. A.J., Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol., 12, 35-57, (1998)
[61] Grafen, A., 1983. Natural selection, kin selection and group selection. In: Behavioural Ecology, 2nd edn. (eds.: Kreps, J.R., and Davies, N.B.) pp. 62–84. Oxford: Blackwell.
[62] Grafen, A., Split sex ratios and the evolutionary origins of eusociality, J. Theor. Biol., 122, 95-121, (1986)
[63] Grafen, A., Willam donald Hamilton, Biographical Memoirs of Fellows of the Royal Society, 50, 109-132, (2004)
[64] Grafen, A., Optimization of inclusive fitness, J. Theor. Biol., 238, 541-563, (2006)
[65] Grafen, A., A theory of Fisher’s reproductive value, J. Math. Biol., 53, 15-60, (2006) · Zbl 1101.92031
[66] Grafen, A., An inclusive fitness analysis of altruism on a cyclical network, J. Evol. Biol., 20, 2278-2283, (2007)
[67] Hamilton, W. D., The evolution of altruistic behavior, Am. Nat., 97, 896, 354-356, (1963)
[68] Hamilton, W. D., The genetical theory of social behaviour I, J. Theor. Biol., 7, 896, 1-16, (1964)
[69] Hamilton, W. D., The genetical theory of social behaviour II, J. Theor. Biol., 7, 896, 17-32, (1964)
[70] Hamilton, W.D., 1971. Selection of selfish and altruistic behaviour in some extreme models. In: Man and beast: comparative social behaviour (eds.: Eisenberg, J.F., and Dillon, W.S.) pp. 59–91. Washington D.C.: Smithsonian Institute Press.
[71] Hatchwell, B. J.; Gullett, P. R.; Adams, M. J., Helping in cooperatively breeding long-tailed titsa test of Hamilton’s rule, Phil. Trans. R. Soc. B, 369, 20130565, (2014)
[72] Hofbauer, J.; Sigmund, K., Adaptive dynamics and evolutionary stability, Appl. Math. Letters, 3, 75-79, (1990) · Zbl 0709.92015
[73] Hogendoorn, K.; Leys, R., The superseded Female’s dilemmaultimate and proximate factors that influence guarding behaviour of the Carpenter bee xylocopa pubescens, Behav. Ecol. Sociobiol., 33, 371-381, (1993)
[74] Van Huyck, J. B.; Battalio, R. C.; Beil, R. O., Tacit coordination games, strategic uncertainty, and coordination failure, Am. Econ. Rev, 80, 1, 234-248, (1990)
[75] Imhof, L. A.; Fudenberg, D.; Nowak, M. A., Evolutionary cycles of cooperation and defection, Proc. Natl. Acad. Sci. USA, 102, 31, 10797-10800, (2005)
[76] Iosifescu, M., Finite Markov processes and their applications. wiley series in probability and mathematical statistics, 1980, (1980), Wiley New York
[77] Karlin, S.; Matessi, C., The eleventh R.A. Fisher memorial lecturekin selection and altruism, Proc. R. Soc. Lond. B, 219, 327-353, (1983) · Zbl 0555.92012
[78] Krakauer, A. H., Kin selection and cooperative courtship in wild turkeys, Nature, 434, 69-72, (2005)
[79] Kreps, D.M., Sobel, J., 1994. Handbook of Game Theory with Economic Applications, vol. 2, pp. 849-867.
[80] Kimura, M., Diffusion models in population genetics, J. App. Prob., 1, 177-232, (1964) · Zbl 0134.38103
[81] Kingman, J. F.C., On an inequality in partial averages, Quart. J. Math. Oxford, 12, 1, 78-80, (1961) · Zbl 0099.24802
[82] Kingman, J. F.C., A mathematical problem in population genetics, Math. Proc. Camb. Phil. Soc, 57, 3, 574-582, (1961) · Zbl 0104.38202
[83] Kurokawa, S.; Ihara, Y., Emergence of cooperation in public goods games, Proc. R. Soc. B, 276, 1379-1384, (2009)
[84] Lehmann, L., The stationary distribution of a continuously varying strategy in a class-structured population under mutation-selection-drift balance, J. Evol. Biol., 25, 4, 770-787, (2012)
[85] Leslie, P. H., Some further remarks on the use of matrices in population mathematics, Biometrika, 35, 213-245, (1948) · Zbl 0034.23303
[86] Lessard, S., Fisher’s fundamental theorem of natural selection revisited, Theor. Pop. Biol., 52, 119-136, (1997) · Zbl 0893.92022
[87] Lessard, S.; Castilloux, A.-. M., The fundamental theorem of natural selection in Ewens’ sensecase of fertility selection, Genetics, 141, 3-42, (1995)
[88] Lessard, S., Effective game matrix and inclusive payoff in group-structured populations, Dyn. Games Appl., 1, 301-318, (2011) · Zbl 1261.91007
[89] Lieberman, E.; Hauert, C.; Nowak, M. A., Evolutionary dynamics on graphs, Nature, 433, 312-316, (2005)
[90] Lieberman, D.; Tooby, J.; Cosmides, L., Does morality have a biological basis? an empirical test of the factors governing moral sentiments relating to incest, Proc. R. Soc. B, 270, 1517, 819-826, (2003)
[91] Lieberman, D.; Tooby, J.; Cosmides, L., The architecture of human kin detection, Nature, 445, 727-731, (2007)
[92] Loeb, M. L.G., Evolution of egg dumping in a subsocial insect, Am. Nat., 161, 129-142, (2003)
[93] Luo, S., A unifying framework reveals key properties of multilevel selection, J. Theor. Biol., 341, 41-52, (2014) · Zbl 1411.92216
[94] Maciejewski, W., Reproductive value on evolutionary graphs, J. Theor. Biol., 340, 283-293, (2014)
[95] Marshall, J.A.R., 2011. Group selection and kin selection: formally equivalent approaches. Trends Ecol. Evol. 26, 325-332.
[96] Marshall, J.A.R, 2015. Social evolution and inclusive fitness theory: an introduction. Princeton: Princeton University Press.
[97] Matessi, C.; Karlin, S., On the evolution of altruism by kin selection, Proc. Natl. Acad. Sci. USA, 81, 1754-1758, (1984)
[98] Matessi, C.; Karlin, S., Altruistic behavior in sibling groups with unrelated intruders, (Karlin, S.; Nevo, E., Evolutionary Process and Theory, (1986), Academic Press Orlando, Fla), 689-724
[99] Metcalf, R. A.; Whitt, G. S., Relative inclusive fitness in the social wasp polistes metricus, Behav. Ecol. Sociobiol., 2, 353-360, (1977)
[100] Metz, J. A.J.; Geritz, S. A.H.; Meszéna, G.; Jacobs, F. J.A.; van Heerwaarden, J. S., Adaptive dynamics: a geometrical study of the consequences of nearly faithfull reproduction, (van Strien, S. J.; Verduyn-Lunel, S. M., Stochastic and Spatial Structures of Dynamical Systems, (1996), North Holland, Elsevier), 183-231 · Zbl 0972.92024
[101] Milchtaich, I., Comparative statics of games between relatives, Theor. Pop. Biol., 69, 203-210, (2006) · Zbl 1089.92032
[102] Milinski, M.; Sommerfeld, R. D.; Krambeck, H.-. J.; Reed, F.. A.; Marotzke, J., The collective-risk social dilemma and the prevention of dangerous climate change, Proc. Natl. Acad. Sci. USA, 105, 2291-2294, (2008)
[103] Miller, G., The mating mind; how sexual choice shaped the evolution of human nature, (2001), Anchor Books New York
[104] Mulholland, H. P.; Smith, C. A.B., An inequality arising in genetical theory, Am. Math. Monthly, 66, 8, 673-683, (1959) · Zbl 0094.00903
[105] Noonan, K. M., Individual strategies of inclusive fitness-maximizing in polistes fuscatus foundnesses, (Alexander, R. D.; Tinkle, D. W., Natural Selection and Social Behavior, (1981), Chiron Press New York, NY), 18-44
[106] Nonacs, P.; Reeve, H. K., The ecology of cooperation in waspscauses and consequences of alternative reproductive decisions, Ecology, 76, 953-967, (1995)
[107] Nowak, M. A., Evolutionary dynamics: exploring the equations of life, (2006), Harvard University Press Cambridge, MA · Zbl 1115.92047
[108] Nowak, M. A.; Sasaki, A.; Taylor, C.; Fudenberg, D., Emergence of cooperation and evolutionary stability in finite populations, Nature, 428, 646-650, (2004)
[109] Nowak, M. A.; Sigmund, K., The evolution of stochastic strategies in the Prisoner’s dilemma, Acta Appl. Math., 20, 247-265, (1990) · Zbl 0722.90092
[110] Nowak, M.A., Tarnita, C.E., Wilson, E.O., 2010. The evolution of eusociality. Nature 466, 1057–1062.
[111] Ohtsuki, H.; Hauert, C.; Lieberman, E.; Nowak, M. A., A simple rule for the evolution of cooperation on graphs and social networks, Nature, 441, 502-505, (2006)
[112] Ohtsuki, H.; Nowak, M. A., Evolutionary games on cycles, Proc. R. Soc. B, 273, 2249-2256, (2006)
[113] Ohtsuki, H., Does synergy rescue the evolution of cooperation? - an analysis for homogeneous populations with non-overlapping generations, J. Theor. Biol., 307, 20-28, (2012) · Zbl 1337.92191
[114] Okasha, S.; Martens, J., The causal meaning of Hamilton’s rule, R. Soc. Open Sci., 3, 160037, (2016)
[115] Okasha, S.; Martens, J., Hamilton’s rule, inclusive fitness maximization, and the goal of individual behaviour in symmetric two-player games, J. Evol. Biol., 29, 473-482, (2016)
[116] Okasha, S., 2016. On Hamilton’s rule and inclusive fitness theory with non-additive payoffs. Phil. Sci, to appear.
[117] Oster, G., Eshel, I., Cohen, D., 1977. Worker-queen conflicts and the evolution of social insects. Theor. Pop. Biol. 12, 49–85. · Zbl 0363.92018
[118] Pacheco, J. M.; Santos, F. C.; Souza, M. O.; Skyrms, B., Evolutionary dynamics of collective action in N-person stag hunt dilemmas, Proc. R. Soc. B, 276, 1655, 315-321, (2009)
[119] Pamilo, P.; Crozier, R. H., Measuring genetic relatedness in natural populationsmethodology, Theor. Pop. Biol., 21, 171-193, (1982)
[120] Pfennig, D. W.; Collins, J. P.; Ziemba, R. E., A test of alternative hypotheses for kin recognition in cannibalistic tiger salamanders, Behav. Ecol., 10, 436-443, (1999)
[121] Price, G. R., Selection and covariance, Nature, 227, 5257, 520-521, (1970)
[122] Price, G. R., Fisher’s fundamental theorem made clear, Annals of Human Genetics, 36, 129-140, (1972) · Zbl 0241.92011
[123] Queller, D. C., Kinship, reciprocity and synergism in the evolution of social behaviour, Nature, 318, 366-367, (1985)
[124] Queller, D. C., A general model for kin selection, Evolution, 46, 2, 376-380, (1992)
[125] Queller, D. C., Quantitative genetics, inclusive fitness, and group selection, Am. Nat., 139, 3, 540-558, (1992)
[126] Queller, D. C.; Strassmann, J. E., Reproductive success and group nesting in the paper wasp polistes annularis, (Clutton-Brock, T. H., Reproductive Success, (1988), University of Chicago Press Chicago, IL), 76-96
[127] Richards, M. H.; French, D.; Paxton, R. J., It’s good to be queenclassically eusocial colony structure and low worker fitness in an obligately social sweat bee, Mol. Ecol., 14, 4123-4133, (2005)
[128] Richerson, P. J.; Boyd, R., Not by genes alone; how culture transformed human evolution, (2004), University of Chicago Press Chicago
[129] Rousset, F., Genetic structure and selection in subdivided populations, (2004), Princeton University Press Princeton, NJ
[130] Rousset, F., Regression, least squares, and the general version of inclusive fitness, Evolution, 69, 2963-2970, (2015)
[131] Rousset, F.; Billiard, S., A theoretical basis for measures of kin selection in subdivided populationsfinite populations and localized dispersal, J. Evol. Biol., 13, 814-825, (2000)
[132] Roze, D.; Rousset, F., The robustness of Hamilton’s rule with inbreeding and dominancekin selection and fixation probabilities under partial sib mating, Am. Nat., 164, 2, 214-231, (2004)
[133] Santos, F.C, Pacheco, J.M, 2011. Risk of collective failure provides an escape from the tragedy of the commons. Proc. Natl. Acad. Sci. USA 108, 10421–10425
[134] Schreuer, P. A.G.; Mandel, S. P.H., An inequality in population genetics, Heredity, 13, 4, 519-524, (1959)
[135] Simon, B., A dynamical model of two-level selection, Evol. Ecol. Res., 12, 555-588, (2010)
[136] Simon, B.; Fletcher, J. A.; Doebeli, M., Towards a general theory of group selection, Evolution, 67, 1561-1572, (2013)
[137] Souza, M. O.; Pacheco, J. M.; Santos, F. C., Evolution of cooperation under N-person snowdrift games, J. Theor. Biol., 260, 581-588, (2009) · Zbl 1402.91061
[138] Stark, R. E., Cooperative nesting in the multivoltine large Carpenter bee xylocopa sulcatipes maa (apoidea: anthophoridae)do helpers gain or lose to solitary females?, Ethology, 91, 301-310, (1992)
[139] Tarnita, C. E.; Ohtsuki, H.; Antal, T.; Fu, F.; Nowak, M. A., Strategy selection in structured populations, J. Theor. Biol., 259, 570-581, (2009) · Zbl 1402.91064
[140] Taylor, P. D., Inclusive fitness models with two sexes, Theor. Pop. Biol., 34, 2, 145-168, (1988) · Zbl 0648.92011
[141] Taylor, P. D., Evolutionary stability in one-parameter models under weak selection, Theor. Pop. Biol., 36, 125-143, (1989) · Zbl 0684.92014
[142] Taylor, P.D., 1990. Allele frequency change in a class-structured population. Am. Nat. 135, 95–106.
[143] Taylor, P. D., Altruism in viscous populations - an inclusive fitness model, Evol. Ecol., 6, 352-356, (1992)
[144] Taylor, P. D., Inclusive fitness in a homogeneous environment, Proc R. Soc. Lond. B, 249, 299-302, (1992)
[145] Taylor, P. D.; Day, T.; Wild, G., Evolution of cooperation in a finite homogeneous graph, Nature, 447, 469-472, (2007)
[146] Taylor, P. D.; Day, T.; Wild, G., From inclusive fitness to fixation probability in homogeneous structured populations, J. Theor. Biol., 249, 101-110, (2007)
[147] Taylor, P. D.; Frank, S. A., How to make a kin selection model, J. Theor. Biol., 180, 27-37, (1996)
[148] Taylor, P.; Jonker, L., Evolutionary stable strategies and game dynamics, Math. Biosciences, 40, 145-156, (1978) · Zbl 0395.90118
[149] Taylor, P.; Maciejewski, W., Hamilton’s inclusive fitness in finite-structured populations, Phil. Trans. R. Soc. B., 369, 20130360, (2014)
[150] van Veelen, M., Hamilton’s missing link, J. Theor. Biol., 246, 551-554, (2007)
[151] Van Veelen, M., Group selection, kin selection, altruism and cooperationwhen inclusive fitness is right and when it can be wrong, J. Theor. Biol., 259, 589-600, (2009) · Zbl 1402.92324
[152] van Veelen, M., A rule is not a rule if it changes from case to case (a reply to Marshall’s comment), J. Theor. Biol., 270, 189-195, (2011) · Zbl 1331.92115
[153] van Veelen, M., The replicator dynamics with \(n\) player games and population structure, J. Theor. Biol., 276, 78-85, (2011) · Zbl 1405.91046
[154] van Veelen, M.; García, J.; Rand, D. G.; Nowak, M. A., Direct reciprocity in structured populations, Proc. Natl. Acad. Sci. USA, 109, 9929-9934, (2012) · Zbl 1355.91062
[155] van Veelen, M.; Luo, S.; Simon, B., A simple model of group selection that cannot be analyzed with inclusive fitness, J. Theor. Biol., 360, 279-289, (2014) · Zbl 1343.92372
[156] van Veelen, M.; Nowak, M. A., Multi-player games on the cycle, J. Theor. Biol., 292, 116-128, (2012) · Zbl 1307.91018
[157] van Veelen, M.; Spreij, P., Evolution in games with a continuous action space, Econ. Theory, 39, 355-376, (2009) · Zbl 1166.91008
[158] Volij, O., In defense of DEFECT, Games Econ. Beh., 39, 309-321, (2002) · Zbl 1035.91015
[159] Wakano, J. Y.; Lehmann, L., Evolutionary branching in deme-structured populations, J. Theor. Biol., 351, 83-95, (2014) · Zbl 1412.92231
[160] Wang, J.; Fu, F.; Wu, T.; Wang, L., Emergence of social cooperation in threshold public goods game with collective risk, Phys. Rev. E, 80, 016101, (2009)
[161] Weibull, J.W., 1995. Evolutionary game theory, Cambridge, MA: MIT Press · Zbl 0879.90206
[162] Wild, G.; Traulsen, A., The different limits of weak selection and the evolutionary dynamics of finite populations, J. Theor. Biol., 247, 382-390, (2007)
[163] Wilson, D. S.; Pollock, G. B.; Dugatkin, L. A., Can altruism evolve in purely viscous populations?, Evol. Ecol., 6, 331-341, (1992)
[164] Zahavi, A., The handicap principle: A missing piece of Darwin’s puzzle, (1997), Oxford University Press Oxford
[165] Zheng, D. F.; Yin, H.; Chan, C.-H.; Hui, P. M., Cooperative behavior in a model of evolutionary snowdrift games with N-person interactions, Europhys. Let., 80, 18002, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.