×

Differential transform vibration and modal stress analyses of circular plates made of two-directional functionally graded materials resting on elastic foundations. (English) Zbl 1271.74185

Summary: In the present paper, the differential transformation method is employed to develop a semi-analytical solution for free vibration and modal stress analyses of two-dimensional functionally graded circular plates resting on two-parameter elastic foundations. Simultaneous variations of the material properties in the radial and transverse directions are described by a general function. Some comprehensive sensitivity analyses are performed, and the natural frequencies and the modal stresses are extracted for free, simply supported, and clamped boundary conditions and different combinations of the geometric, material, and foundation parameters. Therefore, very complex combinations of the material properties, boundary conditions, and parameters of the elastic foundation are considered in the present semi-analytical solution approach. Thus, many novelties are included in the present research. Comparisons made between the present results and results reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. Moreover, the paper treats some interesting problems, for the first time.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K20 Plates
74E05 Inhomogeneity in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bauer H.F., Eidel W.: Determination of the lower natural frequencies of circular plates with mixed boundary conditions. J. Sound Vib. 292, 742–764 (2005) · doi:10.1016/j.jsv.2005.08.034
[2] Wu T.Y., Wang Y.Y., Liu G.R.: Free vibration analysis of circular plates using generalized differential quadrature rule. Comput. Meth. Appl. Mech. Eng. 191, 5365–5380 (2002) · Zbl 1083.74549 · doi:10.1016/S0045-7825(02)00463-2
[3] Gupta U.S., Lal R., Sharma S.: Vibration analysis of non-omogeneous circular plate of nonlinear thickness variation by differential quadrature method. J. Sound Vib. 298, 892–906 (2006) · Zbl 1243.74105 · doi:10.1016/j.jsv.2006.05.030
[4] Prakash T., Ganapathi M.: Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method. Compos. Part B 37, 642–649 (2006) · doi:10.1016/j.compositesb.2006.03.005
[5] Nie G.J., Zhong Z.: Semi-analytical solution for three-dimensional vibration of functionally graded circular plates. Comput. Meth. Appl. Mech. Eng. 196, 4901–4910 (2007) · Zbl 1173.74339 · doi:10.1016/j.cma.2007.06.028
[6] Allahverdizadeh A., Naei M.H., Nikkhah Bahrami M.: Nonlinear free and forced vibration analysis of thin circular functionally graded plates. J. Sound Vib. 310, 966–984 (2008) · Zbl 1264.74084 · doi:10.1016/j.jsv.2007.08.011
[7] Ebrahim F., Rastgo A.: An analytical study on the free vibration of smart circular thin FGM plate based on classical plate theory. Thin Wall Struct. 46, 1402–1408 (2008) · doi:10.1016/j.tws.2008.03.008
[8] Dong C.Y.: Three-dimensional free vibration analysis of functionally graded annular plates using the Chebyshev–Ritz method. Mater. Des. 29, 1518–1525 (2008) · doi:10.1016/j.matdes.2008.03.001
[9] Malekzadeh P.: Three-dimensional free vibration analysis of thick functionally graded plates on elastic foundations. Compos. Struct. 89, 367–373 (2009) · doi:10.1016/j.compstruct.2008.08.007
[10] Arikoglu A., Ozkol I.: Solution of boundary value problems for integro-differential equations by using differential transform method. Appl. Math. Comput. 168, 1145–1158 (2005) · Zbl 1090.65145 · doi:10.1016/j.amc.2004.10.009
[11] Chen C.K., Ho S.H.: Application of differential transformation to eigenvalue problems. Appl. Math. Comput. 79, 173–188 (1998) · Zbl 0879.34077 · doi:10.1016/0096-3003(95)00253-7
[12] Malik M., Dang H.H.: Vibration analysis of continuous systems by differential transformation. Appl. Math. Comput. 96, 17–26 (1998) · Zbl 0969.74539 · doi:10.1016/S0096-3003(97)10076-5
[13] Abdel-Halim Hassan I.H.: On solving some eigenvalue problems by using a differential transformation. Appl. Math. Comput. 127, 1–22 (2002) · Zbl 1030.34028 · doi:10.1016/S0096-3003(00)00123-5
[14] Yeh Y.-L., Jang M.-J., Wang C.C.: Analyzing the free vibrations of a plate using finite difference and differential transformation method. Appl. Math. Comput. 178, 493–501 (2006) · Zbl 1102.74024 · doi:10.1016/j.amc.2005.11.068
[15] Yeh Y.-L., Wang C.C., Jang M.-J.: Using finite difference and differential transformation method to analyze of large deflections of orthotropic rectangular plate problem. Appl. Math. Comput. 190, 1146–1156 (2007) · Zbl 1137.74036 · doi:10.1016/j.amc.2007.01.099
[16] Shin Y.-J., Kwon K.-M., Yun J.-H.: Vibration analysis of a circular arch with variable cross-section using differential transformation and generalized differential quadrature. J. Sound Vib. 309, 9–19 (2008) · doi:10.1016/j.jsv.2006.08.020
[17] Yalcin H.S., Arikoglu A., Ozkol I.: Free vibration analysis of circular plates by differential transformation method. Appl. Math. Comput. 212, 377–386 (2009) · Zbl 1182.74116 · doi:10.1016/j.amc.2009.02.032
[18] Shariyat M.: Dynamic thermal buckling of suddenly heated temperature-dependent FGM cylindrical shells, under combined axial compression and external pressure. Int. J. Solids Struct. 45, 2598–2612 (2008) · Zbl 1169.74438 · doi:10.1016/j.ijsolstr.2007.12.015
[19] Shariyat M.: Dynamic buckling of imperfect laminated plates with piezoelectric sensors and actuators subjected to thermo-electro-mechanical loadings, considering the temperature-dependency of the material properties. Compos. Struct. 88, 228–239 (2009) · doi:10.1016/j.compstruct.2008.03.044
[20] Shariyat M.: Vibration and dynamic buckling control of imperfect hybrid FGM plates with temperature-dependent material properties subjected to thermo-electro-mechanical loading conditions. Compos. Struct. 88, 240–252 (2009) · doi:10.1016/j.compstruct.2008.04.003
[21] Shen H.-S.: Functionally Graded Materials: Nonlinear Analysis of Plates and Shells. CRC Press, Taylor & Francis Group, Boca Raton (2009)
[22] Shariyat M.: Thermal buckling analysis of rectangular composite plates with temperature-dependent properties based on a layerwise theory. Thin Wall Struct. 45(4), 439–452 (2007) · doi:10.1016/j.tws.2007.03.004
[23] Abrate S.: Free vibration, buckling, and static deflections of functionally graded plates. Compos. Sci. Tech. 66, 2383–2394 (2006) · doi:10.1016/j.compscitech.2006.02.032
[24] Ferreira A.J.M., Castro L.M.S., Bertoluzza S.: A high order collocation method for the static and vibration analysis of composite plates using a first-order theory. Compos. Struct. 89, 424–432 (2009) · doi:10.1016/j.compstruct.2008.09.006
[25] Ozer H.: A comparative analysis of Mindlin and Kirchhoff bending solutions for nonlinearly tapered annular plate with free edges. Arch. Appl. Mech. 77, 393–405 (2007) · Zbl 1161.74433 · doi:10.1007/s00419-006-0095-8
[26] Zhou J.K.: Differential Transformation and its Application for Electrical Circuits. Huazhong University Press, China (1986)
[27] Leissa, A.W.: Vibration of Plates. NASA SP. 160, Washington (1969) · Zbl 0181.52603
[28] Alipour, M.M., Shariyat, M., Shaban, M.: A semi-analytical solution for free vibration of variable thickness two-directional-functionally graded plates on elastic foundations. Int. J. Mech. Mater. Des. (2010). doi: 10.1007/s10999-010-9134-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.