×

Weak values and modular variables from a quantum phase-space perspective. (English) Zbl 1304.81110

Summary: We address two major conceptual developments introduced by Aharonov and collaborators through a quantum phase - space approach: the concept of modular variables devised to explain the phenomena of quantum dynamical non-locality and the two-state formalism for Quantum Mechanics which is a retrocausal time-symmetric interpretation of quantum physics which led to the discovery of weak values. We propose that a quantum phase-space structure underlies these profound physical insights in a unifying manner. For this, we briefly review the Weyl-Wigner and the coherent state formalisms as well as the inherent symplectic structures of quantum projective spaces to gain a deeper understanding of the weak value concept. We also review Schwinger’s finite quantum kinematics so that we may apply this discrete formalism to understand Aharonov’s modular variable concept in a different manner that has been proposed before in the literature. We discuss why we believe that this is indeed the correct kinematic framework for the modular variable concept and how this may shine some light on the physical distinction between quantum dynamical non-locality and the kinematic non-locality, generally associated with entangled quantum systems.

MSC:

81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics
01A70 Biographies, obituaries, personalia, bibliographies
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115(3), 485-491 (Aug 1959) · Zbl 0099.43102
[2] Aharonov, Y., Pendleton, H., Petersen, A.: Modular variables in quantum theory. Int. J. Theor. Phys. 2(3), 213-230 (1969) · doi:10.1007/BF00670008
[3] Aharonov, Y., Rohrlich, D.: Quantum Paradoxes: Quantum Theory for the Perplexed. Wiley-VCH, Berlin (2005) · Zbl 1081.81001
[4] Aharonov, Y.: On the aharonov-bohm effect and why heisenberg captures nonlocality better than schrödinger. arXiv preprint arXiv:1303.2137, 2013
[5] Aharonov, Y., Bergmann, P.G., Lebowitz, J.L.: Time symmetry in the quantum process of measurement. Phys. Rev. 134(6B), B1410 (1964) · Zbl 0127.43703 · doi:10.1103/PhysRev.134.B1410
[6] Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. lett. 60(14), 1351 (1988) · doi:10.1103/PhysRevLett.60.1351
[7] Aharonov, Y., Botero, A., Popescu, S., Reznik, B., Tollaksen, J.: Revisiting hardy’s paradox: counterfactual statements, real measurements, entanglement and weak values. Phys. Lett. A 301(3), 130-138 (2002) · Zbl 0997.81011 · doi:10.1016/S0375-9601(02)00986-6
[8] Dixon, B.P., Starling, D.J., Jordan, A.N., Howell, J.C.: Ultrasensitive beam deflection measurement via interferometric weak value amplification. Phys. Rev. Lett. 102(17), 173601 (2009)
[9] Hosten, O., Kwiat, P.: Observation of the spin Hall effect of light via weak measurements. Science 319(5864), 787 (2008) · doi:10.1126/science.1152697
[10] Berry, M.V., Shukla, P.: Typical weak and superweak values. J. Phys. A Math. Theor. 43(35), 354024 (2010) · Zbl 1196.81093 · doi:10.1088/1751-8113/43/35/354024
[11] Arnol’d, V.I.: Mathematical methods of classical mechanics. Springer, Berlin (1989) · Zbl 0692.70003
[12] Abraham, R., Marsden, J.E., Raiu, T.S., Cushman, R.: Foundations of mechanics. Benjamin/Cummings Publishing Company, Reading, MA (1978) · Zbl 0393.70001
[13] Klauder, J.R., Sudarshan, E.C.G.: Fundamentals of quantum optics. Dover Publications , New York (2006) · Zbl 0434.42014
[14] De Groot, S.R., Suttorp, L.G.: Foundations of electrodynamics. North-Holland Publishing Company, Amsterdam (1972)
[15] Sakurai, J.J.: Modern Quantum Mechanics. Addison Wesley, Massachusetts (1993).
[16] Böhm, A., Gadella, M., Dollard, J.D.: Dirac Kets, Gamow Vectors, and Gel’fand Triplets: The Rigged Hilbert Space Formulation of Quantum Mechanics: Lectures in Mathematical Physics at the University of Texas at Austin. Springer, Berlin (1989) · Zbl 0691.46051
[17] Schwinger, J.: Quantum kinematics and dynamics. Westview Press , Boulder, USA (2000) · Zbl 1094.81500
[18] Page, D.N.: Geometrical description of Berry’s phase. Phys. Rev. A 36(7), 3479-3481 (1987) · doi:10.1103/PhysRevA.36.3479
[19] Anandan, J., Aharonov, Y.: Geometry of quantum evolution. Phys. Rev. Lett. 65, 1697-1700 (Oct 1990) · Zbl 0960.81524
[20] Zhang, W.M., Gilmore, R., et al.: Coherent states: theory and some applications. Rev. Modern Phys. 62(4), 867 (1990) · doi:10.1103/RevModPhys.62.867
[21] Perelomov, A.: Generalized coherent states and their applications. Springer-Verlag New York Inc., New York, (1986) · Zbl 0605.22013
[22] Klauder, J.R., Skagerstam, B.S.: Coherent states: applications in physics and mathematical physics. World scientific, Singapore (1985) · Zbl 1050.81558
[23] Combescure, M., Robert, D.: Coherent states and applications in Mathematical Physics. Springer, Berlin (2012) · Zbl 1243.81004
[24] Namias, V.: The fractional order fourier transform and its application to quantum mechanics. IMA J. Appl. Math. 25(3), 241-265 (1980) · Zbl 0434.42014 · doi:10.1093/imamat/25.3.241
[25] Vedral, V.: Modern foundations of quantum optics. Imperial College Press, London (2005) · Zbl 1146.81002
[26] Aharonov, Y., Vaidman, L.: The two-state vector formalism: an updated review. In: Time in Quantum Mechanics, pp. 399-447. Springer, Berlin (2007)
[27] von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, New Jersey (1996) · Zbl 0906.00006
[28] Jozsa, R.: Complex weak values in quantum measurement. Phys. Rev. A 76(4), 044103 (2007) · Zbl 1146.76539 · doi:10.1103/PhysRevA.76.044103
[29] Tamate, S., Kobayashi, H., Nakanishi, T., Sugiyama, K., Kitano, M.: Geometrical aspects of weak measurements and quantum erasers. New J. Phys. 11, 093025 (2009) · Zbl 1291.81033 · doi:10.1088/1367-2630/11/9/093025
[30] Pancharatnam, S.: Generalized theory of interference, and its applications. Proc. Indian Acad. Sci. A 44, 247 (1956)
[31] Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 392(1802):45-57 (1984) · Zbl 1113.81306
[32] Aharonov, Y., Anandan, J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58(16), 1593-1596 (1987) · doi:10.1103/PhysRevLett.58.1593
[33] Kobayashi, H., Nonaka, K., Shikano, Y.: Stereographical tomography of polarization state using weak measurement with optical vortex beam. arXiv preprint arXiv:1311.3357, (2013)
[34] Lobo, A.C., Ribeiro, R.A., Ribeiro, C.A., Dieguez, P.R.: Geometry of the adiabatic theorem. Eur. J. Phys. 33(5), 1063 (2012) · Zbl 1266.81071
[35] Shikano, Y.: Theory of weak value and quantum mechanical measurements. In JMohammad Reza Pahlavani, editor, Measurements in Quantum Mechanics. InTech, InTech (2012)
[36] Dressel, J., Malik, M., Miatto, F.M., Jordan, A.N., Boyd, R.W.: Colloquium: Understanding quantum weak values: Basics and applications. Rev. Mod. Phys. 86, 307-316 (Mar 2014)
[37] Tollaksen, J.: Non-statistical weak measurements - quantum information and computation v. In: Donkor, E., Pirich, A., Brandt, H. (eds.) Proc of SPIE ,Vol. 6573. CID 6573-33, SPIE, Bellingham, WA (2007)
[38] Zak, J.: Finite translations in solid-state physics. Phys. Rev. Lett. 19, 1385-1387 (1967) · doi:10.1103/PhysRevLett.19.1385
[39] Zak, J.: Dynamics of electrons in solids in external fields. Phys. Rev. 168(3), 686 (1968) · doi:10.1103/PhysRev.168.686
[40] Schwinger, J.: Unitary operator bases. Proceedings of the national academy of sciences of the United States Of America 46(4), 570 (1960) · Zbl 0090.19006
[41] Lobo, A.C., Nemes, M.C.: On the number of degrees of freedom in schwinger’s quantum kinematics. Phys. A Stat. Mech. Appl. 216(1), 185-194 (1995) · doi:10.1016/0378-4371(94)00262-R
[42] Dirac, P.A.M.: The Principles of Quantum Mechanics (The International Series of Monographs on Physics). Oxford University Press, Oxford (1947)
[43] Farmelo, G.: The strangest man: The hidden life of Paul Dirac, quantum genius. Faber & Faber, London (2009) · Zbl 1230.01028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.