×

zbMATH — the first resource for mathematics

Sex-dependent differences in central artery haemodynamics in normal and fibulin-5 deficient mice: implications for ageing. (English) Zbl 1425.92056
Summary: Mouse models provide unique opportunities to study vascular disease, but they demand increased experimental and computational resolution. We describe a workflow for combining in vivo and in vitro biomechanical data to build mouse-specific computational models of the central vasculature including regional variations in biaxial wall stiffness, thickness and perivascular support. These fluid-solid interaction models are informed by micro-computed tomography imaging and in vivo ultrasound and pressure measurements, and include mouse-specific inflow and outflow boundary conditions. Hence, the model can capture three-dimensional unsteady flows and pulse wave characteristics. The utility of this experimental-computational approach is illustrated by comparing central artery biomechanics in adult wild-type and fibulin-5 deficient mice, a model of early vascular ageing. Findings are also examined as a function of sex. Computational results compare well with measurements and data available in the literature and suggest that pulse wave velocity, a spatially integrated measure of arterial stiffness, does not reflect well the presence of regional differences in stiffening, particularly those manifested in male versus female mice. Modelling results are also useful for comparing quantities that are difficult to measure or infer experimentally, including local pulse pressures at the renal arteries and characteristics of the peripheral vascular bed that may differ with disease.
MSC:
92C35 Physiological flow
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Mitchell GF, Parise H, Benjamin EJ, Larson MG, Keyes MJ, Vita JA, Vasan RS, Levy D. (2004) Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study. Hypertension. 43, 1239-1245. (doi:10.1161/01.HYP.0000128420.01881.aa)
[2] Laurent S (2006) Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur. Heart J. 27, 2588-2605. (doi:10.1093/eurheartj/ehl254)
[3] Lakatta EG, Wang M, Najjar SS. (2009) Arterial aging and subclinical arterial disease are fundamentally intertwined at macroscopic and molecular levels. Med. Clin. North Am. 93, 583-604. (doi:10.1016/j.mcna.2009.02.008)
[4] Ferruzzi J, Collins MJ, Yeh AT, Humphrey JD. (2011) Mechanical assessment of elastin integrity in fibrillin-1-deficient carotid arteries: implications for Marfan syndrome. Cardiovasc. Res. 92, 287-295. (doi:10.1093/cvr/cvr195)
[5] Ferruzzi J, Vorp DA, Humphrey JD. (2011) On constitutive descriptors of the biaxial mechanical behaviour of human abdominal aorta and aneurysms. J. R Soc. Interface. 8, 435-450. (doi:10.1098/rsif.2010.0299)
[6] Roccabianca S, Figueroa CA, Tellides G, Humphrey JD. (2014) Quantification of regional differences in aortic stiffness in the aging human. J. Mech. Behav. Biomed. Mater. 29, 618-634. (doi:10.1016/j.jmbbm.2013.01.026)
[7] Cuomo F, Roccabianca S, Dillon-Murphy D, Xiao N, Humphrey JD, Figueroa CA. (2017) Effects of age-associated regional changes in human central artery mechanics on systemic hemodynamics revealed by computational modeling. PLoS ONE 12, 1-21. (doi:10.1371/journal.pone.0173177)
[8] Rammos C, Hendgen-Cotta UB, Deenen R, Pohl J, Stock P, Hinzmann C, Kelm M, Rassaf T. (2014) Age-related vascular gene expression profiling in mice. Mech. Ageing Dev. 135, 15-23. (doi:10.1016/j.mad.2014.01.001)
[9] Fleenor BS, Marshall KD, Durrant JR, Lesniewski LA, Seals DR. (2010) Arterial stiffening with ageing is associated with transforming growth factor-β1-related changes in adventitial collagen: reversal by aerobic exercise. J. Physiol. 588, 3971-3982. (doi:10.1113/jphysiol.2010.194753)
[10] Davis E. (1993) Stability of elastin in the developing mouse aorta: a quantitative radioautographic study. Histochemistry 100, 17-26. (doi:10.1007/BF00268874)
[11] Ferruzzi J, Bersi M, Mecham R, Ramirez F, Yanagisawa H, Tellides G, Humphrey JD. (2016) Loss of elastic fiber integrity compromises common carotid artery function: implications for vascular aging. Artery Res. 14, 41-52. (doi:10.1016/j.artres.2016.04.001)
[12] Wan W, Gleason RL. (2013) Dysfunction in elastic fiber formation in fibulin-5 null mice abrogates the evolution in mechanical response of carotid arteries during maturation. Am. J. Physiol. Heart Circ. Physiol. 304, H674-H686. (doi:10.1152/ajpheart.00459.2012)
[13] Ferruzzi J, Bersi MR, Uman S, Yanagisawa H, Humphrey JD. (2015) Decreased elastic energy storage, not increased material stiffness, characterizes central artery dysfunction in fibulin-5 deficiency independent of sex. J. Biomech. Eng. 137, 031007. (doi:10.1115/1.4029431)
[14] Gleason RL, Gray SP, Wilson E, Humphrey JD. (2004) A multiaxial computer-controlled organ culture and biomechanical device for mouse carotid arteries. J. Biomech. Eng. 126, 787-795. (doi:10.1115/1.1824130)
[15] CRIMSON. 2017 CardiovasculaR Integrated Modelling and SimulatiON. See http://www.crimson.software.
[16] Sahni O, Müller J, Jansen KE, Shephard MS, Taylor CA. (2006) Efficient anisotropic adaptive discretization of the cardiovascular system. Comput. Methods Appl. Mech. Eng. 195, 5634-5655. (doi:10.1016/j.cma.2005.10.018) · Zbl 1125.76046
[17] Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA. (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195, 5685-5706. (doi:10.1016/j.cma.2005.11.011) · Zbl 1126.76029
[18] Cuomo F, Ferruzzi J, Humphrey JD, Figueroa CA. (2015) An experimental–computational study of catheter induced alterations in pulse wave velocity in anesthetized mice. Ann. Biomed. Eng. 43, 1555-1570. (doi:10.1007/s10439-015-1272-0)
[19] Baek S, Gleason RL, Rajagopal KR, Humphrey JD. (2007) Theory of small on large: potential utility in computations of fluid–solid interactions in arteries. Comput. Methods Appl. Mech. Eng. 196, 3070-3078. (doi:10.1016/j.cma.2006.06.018) · Zbl 1127.74026
[20] Ferruzzi J, Bersi MR, Humphrey JD. (2013) Biomechanical phenotyping of central arteries in health and disease: advantages of and methods for murine models. Ann. Biomed. Eng. 41, 1311-1330. (doi:10.1007/s10439-013-0799-1)
[21] Les AS, Yeung JJ, Schultz GM, Herfkens RJ, Dalman RL, Taylor CA. (2010) Supraceliac and infrarenal aortic flow in patients with abdominal aortic aneurysms: mean flows, waveforms, and allometric scaling relationships. Cardiovasc. Eng. Technol. 1, 39-51. (doi:10.1007/s13239-010-0004-8)
[22] Stergiopulos N, Westerhof N. (1999) Role of total arterial compliance and peripheral resistance in the determination of systolic and diastolic aortic pressure. Pathol. Biol. (Paris). 47, 641-647.
[23] Simon AC, Safar ME, Levenson JA, London GM, Levy BI, Chau NP. (1979) An evaluation of large arteries compliance in man. Am. J. Physiol. 237, H550-H554.
[24] Xiao N, Alastruey J, Figueroa CA. (2014) A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models. Int. J. Numer. Method Biomed. Eng. 30, 204-231. (doi:10.1002/cnm.2598)
[25] Feintuch A (2007) Hemodynamics in the mouse aortic arch as assessed by MRI, ultrasound, and numerical modeling. Am. J. Physiol. Heart Circ. Physiol. 292, H884-H892. (doi:10.1152/ajpheart.00796.2006)
[26] Greve JM, Les AS, Tang BT, Draney Blomme MT, Wilson NM, Dalman RL, Pelc NJ, Taylor CA. (2006) Allometric scaling of wall shear stress from mice to humans: quantification using cine phase-contrast MRI and computational fluid dynamics. Am. J. Physiol. Heart Circ. Physiol. 291, H1700-H1708. (doi:10.1152/ajpheart.00274.2006)
[27] Gaddum NR, Alastruey J, Beerbaum P, Chowienczyk P, Schaeffter T. (2013) A technical assessment of pulse wave velocity algorithms applied to non-invasive arterial waveforms. Ann. Biomed. Eng. 41, 2617-2629. (doi:10.1007/s10439-013-0854-y)
[28] Hartley CJ, Reddy AK, Madala S, Entman ML, Michael LH, Taffet GE. (2011) Doppler velocity measurements from large and small arteries of mice. Am. J. Physiol. Hear. Circ. Physiol. 301, H269-H278. (doi:10.1152/ajpheart.00320.2011)
[29] Womersley JR. (1955) XXIV. Oscillatory motion of a viscous liquid in a thin-walled elastic tube — I : The linear approximation for long waves. Lond. Edin. Dublin Philos. Mag. J. Sci. 46, 199-221. (doi:10.1080/14786440208520564) · Zbl 0064.43903
[30] Womersley JR. (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127, 553-563. (doi:10.1113/jphysiol.1955.sp005276)
[31] Figueroa CA. (2006) A coupled-momentum method to model blood flow and vessel deformation in human arteries: applications in disease research and simulation-based medical planning. Chapter 2. Mathematics and physics of pulsatile flow in deformable vessels. PhD thesis, Stanford University, Stanford, CA, USA.
[32] Nichols W, O’Rourke M, Vlachopoulos C. (1998) McDonald’s blood flow in arteries: theoretical, experimental and clinical principles, 5th edn. New York, NY: Oxford University Press.
[33] van de Vosse FN, Stergiopulos N. (2011) Pulse wave propagation in the arterial tree. Annu. Rev. Fluid Mech. 43, 467-499. (doi:10.1146/annurev-fluid-122109-160730) · Zbl 1299.76328
[34] Laurent S, Boutouyrie P. (2015) The structural factor of hypertension: large and small artery alterations. Circ. Res. 116, 1007-1021. (doi:10.1161/CIRCRESAHA.116.303596)
[35] Humphrey JD, Harrison DG, Figueroa CA, Lacolley P, Laurent S. (2016) Central artery stiffness in hypertension and aging: a problem with cause and consequence. Circ. Res. 118, 379-381. (doi:10.1161/CIRCRESAHA.115.307722)
[36] Bellini C, Caulk AW, Li G, Tellides G, Humphrey JD. (2017) Biomechanical phenotyping of the murine aorta: what is the best control? J. Biomech. Eng. 139, 044501. (doi:10.1115/1.4035551)
[37] Le VP, Stoka KV, Yanagisawa H, Wagenseil JE. (2014) Fibulin-5 null mice with decreased arterial compliance maintain normal systolic left ventricular function, but not diastolic function during maturation. Physiol. Rep. 2, 1-16.
[38] Donato AJ, Walker AE, Magerko KA, Bramwell RC, Black AD, Henson GD, Lawson BR, Lesniewski LA, Seals DR. (2013) Life-long caloric restriction reduces oxidative stress and preserves nitric oxide bioavailability and function in arteries of old mice. Aging Cell. 12, 772-783. (doi:10.1111/acel.12103)
[39] Ferruzzi J, Madziva D, Caulk AW, Tellides G, Humphrey JD. (2018) Compromised mechanical homeostasis in arterial aging and associated cardiovascular consequences. Biomech. Model. Mechanobiol. 17, 1281-1295. (doi:10.1007/s10237-018-1026-7)
[40] Saouti N, Marcus JT, Vonk Noordegraaf A, Westerhof N. (2012) Aortic function quantified: the heart’s essential cushion. J. Appl. Physiol. 113, 1285-1291. (doi:10.1152/japplphysiol.00432.2012)
[41] Humphrey JD, Eberth JF, Dye WW, Gleason RL. (2009) Fundamental role of axial stress in compensatory adaptations by arteries. J. Biomech. 42, 1-8. (doi:10.1016/j.jbiomech.2008.11.011)
[42] Hartley C (2000) Hemodynamic changes in apolipoprotein E-knockout mice. Am. J. Physiol. Heart Circ. Physiol. 279, H2326-H2334. (doi:10.1152/ajpheart.2000.279.5.H2326)
[43] Huo Y, Guo X, Kassab GS. (2008) The flow field along the entire length of mouse aorta and primary branches. Ann. Biomed. Eng. 36, 685-699. (doi:10.1007/s10439-008-9473-4)
[44] Trachet B, Renard M, De Santis G, Staelens S, De Backer J, Antiga L, Loeys B, Segers P. (2011) An integrated framework to quantitatively link mouse-specific hemodynamics to aneurysm formation in angiotensin II-infused ApoE -/- mice. Ann. Biomed. Eng. 39, 2430-2444. (doi:10.1007/s10439-011-0330-5)
[45] Trachet B, Bols J, Degroote J, Verhegghe B, Stergiopulos N, Vierendeels J, Segers P. (2015) An animal-specific FSI model of the abdominal aorta in anesthetized mice. Ann. Biomed. Eng. 43, 1298-1309. (doi:10.1007/s10439-015-1310-y)
[46] De Wilde D, Trachet B, Debusschere N, Iannaccone F, Swillens A, Degroote J, Vierendeels J, De Meyer GRY, Segers P. (2016) Assessment of shear stress related parameters in the carotid bifurcation using mouse-specific FSI simulations. J. Biomech. 49, 2135-2142. (doi:10.1016/j.jbiomech.2015.11.048)
[47] Aslanidou L, Trachet B, Reymond P, Fraga-Silva RA, Segers P, Stergiopulos N. (2015) A 1D model of the arterial circulation in mice. ALTEX 33, 13-28.
[48] Segers P (2005) Conductance catheter-based assessment of arterial input impedance, arterial function, and ventricular-vascular interaction in mice. Am. J. Physiol. Heart Circ. Physiol. 288, H1157-H1164. (doi:10.1152/ajpheart.00414.2004)
[49] Guo X, Kassab GS. (2003) Variation of mechanical properties along the length of the aorta in C57bl/6 mice. Am. J. Physiol. Heart Circ. Physiol. 285, H2614-H2622. (doi:10.1152/ajpheart.00567.2003)
[50] Robin F, Torsten L. (1931) The viscosity of blood in narrow capillary tubes. Am. J. Physiol. 96, 562-568.
[51] Cuomo F, Ferruzzi J, Agarwal P, Li C, Zhuang ZW, Humphrey JD, Figueroa CA. (2018) Data from: Sex-dependent differences in central artery hemodynamics in normal and fibulin-5 deficient mice: implications for aging. Dryad Digital Repository. (doi:10.5061/dryad.64c32m5)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.