×

Mahler’s method. (English) Zbl 1451.11002

Summary: Mahler’s method, a term coined much later by van der Poorten, originated in three papers of K. Mahler [Math. Ann. 101, 342–366 (1929; JFM 55.0115.01); Math. Ann. 103, 573–587 (1930; JFM 56.0185.03); Math. Z. 32, 545–585 (1930; JFM 56.0186.01)] published in 1929 and 1930. As reported in [K. Mahler, J. Number Theory 14, 121–155 (1982; Zbl 0482.10002); A. J. van der Poorten, J. Aust. Math. Soc., Ser. A 51, No. 3, 343–380 (1991; Zbl 0738.01015), Appendix II], Mahler was really sick and laid up in bed around 1926–27 when he started to occupy himself by playing with the function \[ \mathfrak{f}(z)=\sum^\infty_{n=0} z^{2^n}.\] While trying to show the irrationality of the number \(\mathfrak{f}(p/q)\) for rational numbers \(p/q\) with \(0<|p/q|<1\), he finally finished proving the following much stronger statement.
Theorem 0.1. Let \(\alpha\) be an algebraic number such that \(0<|\alpha|<1\). Then \(\mathfrak{f}(\alpha)\) is a transcendental number.
And Mahler’s method, an entirely new subject, was born. In the hands of Mahler, the method already culminated with the transcendence of various numbers such as
\[\sum_{n=0}^\infty\alpha^{2^n}, \prod_{n=0}^\infty (1-\alpha^{2^n}), \sum_{n=0}^\infty\lfloor n\sqrt{5}\rfloor\alpha^n, \cfrac{1}{\alpha^{-2} + \cfrac{1}{\alpha^{-4}+{\cfrac{1}{\alpha^{-8} +\cdots}}}}\]
and with the algebraic independence of the numbers \(\mathfrak{f}(\alpha)\), \(\mathfrak{f}'(\alpha)\), \(\mathfrak{f}''(\alpha), \ldots\). Here, \(\alpha\) denotes again an algebraic number with \(0<|\alpha|<1\). Moreover, examples of this kind can be produced at will, as illustrated for instance in [A. J. van der Poorten, in: Sémin. Théor. Nombres 1975–1976, Univ. Bordeaux, Exposé No. 14, 13 p. (1976; Zbl 0356.10028)]. Not only was Mahler’s contribution fundamental, but also some of his ideas, described in [K. Mahler, J. Number Theory 1, 512–521 (1969; Zbl 0184.07602)], were very influential for the future development of the theory by other mathematicians.
There are several surveys including a discussion on this topic, as well as seminar reports, due to J. H. Loxton [Bull. Aust. Math. Soc. 29, 127–136 (1984; Zbl 0519.10022); in: New advances in transcendence theory, Proc. Symp., Durham/UK 1986, 215–228 (1988; Zbl 0656.10032)], J. H. Loxton and A. J. van der Poorten [in: Transcend. Theory, Proc. Conf., Cambridge 1976, 211–226 (1977; Zbl 0378.10020)], K. Mahler [in: 1969 Number Theory Institute, Proc. Sympos. Pure Math. 20, 248–274 (1971; Zbl 0213.32703)], D. Masser [Lect. Notes Math. 1819, 1–51 (2003; Zbl 1049.11081)], Yu. V. Nesterenko [in: Proceedings of the international congress of mathematicians (ICM), August 21–29, 1990, Kyoto, Japan. Volume I. Tokyo etc.: Springer-Verlag. 447–457 (1991; Zbl 0743.11035)], K. Nishioka [Mahler functions and transcendence. Berlin: Springer (1996; Zbl 0876.11034)], F. Pellarin [Astérisque 317, 205–242, Exp. No. 973 (2008; Zbl 1185.11048); “An introduction to Mahler’s method for transcendence and algebraic independence”, Preprint, arXiv:1005.1216], A. J. van der Poorten [Sémin. Théor. Nombres 1974–1975, Univ. Bordeaux, Exp. No. 7, 13 p. (1975; Zbl 0331.10018); Sémin. Théor. Nombres 1975–1976, Univ. Bordeaux, Exp. No. 14, 13 p. (1976; Zbl 0356.10028); Sémin. Théor. Nombres 1986–1987, Exp. No. 27, 11 p.].
In particular, Nishioka [loc. cit.] wrote the first and, up to date, the only book entirely devoted to Mahler’s method. It provides an invaluable source of information, as well as an exhaustive account up to 1996.
The author is indebted to all these mathematicians whose writings helped him a lot to prepare the present survey. He also thanks Michel Waldschmidt for his comments regarding a preliminary version of this text.

MSC:

11-03 History of number theory
11-02 Research exposition (monographs, survey articles) pertaining to number theory
11J81 Transcendence (general theory)
11J82 Measures of irrationality and of transcendence
11J85 Algebraic independence; Gel’fond’s method

Biographic References:

Mahler, Kurt
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] K. Mahler, Arithmetische Eigenschaften der L\"osungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), 342-366 · JFM 55.0115.01
[2] K. Mahler, \"Uber das Verschwinden von Potenzreihen mehrerer Ver\"anderlicher in speziellen Punktfolgen, Math. Ann. 103 (1930), 573-587 · JFM 56.0185.03
[3] K. Mahler, Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen, Math. Z. 32 (1930), 545-585 · JFM 56.0186.01
[4] K. Mahler, Remarks on a paper by W. Schwarz, J. Number Theory 1 (1969), 512-521
[5] K. Mahler, Lectures on transcendental numbers (Summer Institute on Number Theory at Stony Brook, 1969), Proc. Symp. Pure Math. (Amer. Math. Soc.) XX (1969), 248-274
[6] K. Mahler, On the transcendency of the solutions of a special class of functional equations, Bull. Aust. Math. Soc. 13 (1975), 389-410 · Zbl 0316.10021
[7] K. Mahler, Fifty years as a Mathematician, J. Number Theory 14 (1982), 121-155 · Zbl 0482.10002
[8] K. Mahler, Some suggestions for further research, Bull. Aust. Math. Soc. 29 (1984), 101-108 · Zbl 0517.10001
[9] K. Mahler, Fifty years as a Mathematician II, J. Aust. Math. Soc. 51 (1991), 366-380
[10] B. Adamczewski and J. P. Bell, A problem about Mahler functions, Ann. Sc. Norm. Super. Pisa. 17 (2017), 1301-1355 · Zbl 1432.11086
[11] B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers I. Expansions in integer bases, Ann. of Math. 165 (2007), 547-565 · Zbl 1195.11094
[12] B. Adamczewski, J. Cassaigne, and M. Le Gonidec, On the computational complexity of algebraic numbers: the Hartmanis-Stearns problem revisited, preprint 2016, arXiv:1601.02771 · Zbl 1441.11048
[13] B. Adamczewski et C. Faverjon, M\'ethode de Mahler: relations lin\'eaires, transcendance et applications aux nombres automatiques, Proc. London Math. Soc. 115 (2017), 55-90 · Zbl 1440.11132
[14] B. Adamczewski et C. Faverjon, M\'ethode de Mahler, transcendance et relations lin\'eaires : aspects effectifs, J. Th\'eor. Nombres Bordeaux 30 (2018), 557-573 · Zbl 1441.11179
[15] B. Adamczewski et C. Faverjon, Mahler’s method in several variables I: The theory of regular singular systems, preprint 2018, arXiv:1809.04823 · Zbl 1441.11179
[16] B. Adamczewski et C. Faverjon, Mahler’s method in several variables II: Applications to base change problems and finite automata, preprint 2018, arXiv:1809.04826 · Zbl 1441.11179
[17] J.-P. Allouche and J. Shallit, Automatic sequences. Theory, applications, generalizations, Cambridge University Press, Cambridge, 2003 · Zbl 1086.11015
[18] Y. Andr\'e, S\'eries Gevrey de type arithm\'etique I, II, Ann. of Math. 151 (2000), 705-740, 741-756 · Zbl 1037.11049
[19] Y. Andr\'e, Solution algebras of differential equations and quasi-homogeneous varieties: a new differential Galois correspondence, Ann. Sci. \'Ec. Norm. Sup\'er. 47 (2014), 449-467 · Zbl 1344.12001
[20] K. Barr\'e-Sirieix, G. Diaz, F. Gramain, and G. Philibert, Une preuve de la conjecture de Mahler-Manin, Invent. Math. 124 (1996), 1-9 · Zbl 0853.11059
[21] J. P. Bell and M. Coons, Transcendence tests for Mahler functions, Proc. Amer. Math. Soc. 145 (2017), 1061-1070 · Zbl 1365.11092
[22] J. P. Bell, Y. Bugeaud, and M. Coons, Diophantine approximation of Mahler numbers, Proc. London Math. Soc. 110 (2015), 1157-1206 · Zbl 1320.11064
[23] F. Beukers, A refined version of the Siegel-Shidlovskii theorem, Ann. of Math. 163 (2006), 369-379 · Zbl 1133.11044
[24] J.-P. B\'ezivin, Sur une classe d’\'equations fonctionnelles non lin\'eaires, Funkcialaj Ekvacioj 37 (1994), 263-271 · Zbl 0810.39006
[25] R. Brent, M. Coons, and W. Zudilin, Algebraic independence of Mahler functions via radial asymptotics, Int. Math. Res. Not. (2016), 571-603 · Zbl 1415.11104
[26] L. Carlitz, On certain functions connected with polynomials in a Galois field, Duke Math. J. 1 (1935), 137-168 · JFM 61.0127.01
[27] F. Chyzak, T. Dreyfus, P. Dumas, and M. Mezzarobba, Computing solutions of linear Mahler equations, Math. Comp. 87 (2018), 2977-3021 · Zbl 1393.39002
[28] A. Cobham, On the Hartmanis-Stearns problem for a class of tag machines, Conference Record of 1968 Ninth Annual Symposium on Switching and Automata Theory, Schenectady, New York (1968), 51-60
[29] L. Denis, Ind\'ependance alg\'ebrique des d\'eriv\'ees d’une p\'eriode du module de Carlitz, J. Aust. Math. Soc. 69 (2000), 8-18 · Zbl 0961.11020
[30] L. Denis, Ind\'ependance alg\'ebrique de logarithmes en caract\'eristique p, Bull. Aust. Math. Soc. 74 (2006), 461-470 · Zbl 1116.11058
[31] T. Dreyfus, C. Hardouin, and J. Roques, Hypertranscendence of solutions of Mahler equations, J. Eur. Math. Soc. 20 (2018), 2209-2238 · Zbl 1455.11107
[32] P. Dumas, R\'ecurrences mahl\'eriennes, suites automatiques, \'etudes asymptotiques, Th\`ese de doctorat, Universit\'e de Bordeaux I, Talence, 1993
[33] G. Fernandes, M\'ethode de Mahler en caract\'eristique non nulle : un analogue du Th\'eor\`eme de Ku. Nishioka, Ann. Inst. Fourier (Grenoble) 68 (2018), no. 6, 2553-2580 · Zbl 1436.11087
[34] G. Fernandes, Regular extensions and algebraic relations between values of Mahler functions in positive characteristic, preprint 2018, arXiv:1808.00719
[35] J. Hartmanis and R. E. Stearns, On the computational complexity of algorithms, Trans. Amer. Math. Soc. 117 (1965), 285-306 · Zbl 0131.15404
[36] K. K. Kubota, On the algebraic independence of holomorphic solutions of certain functional equations and their values, Math. Ann. 227 (1977), 9-50 · Zbl 0359.10030
[37] J. H. Loxton, A method of Mahler in transcendence theory and some of its applications, Bull. Aust. Math. Soc. 29 (1984), 127-136 · Zbl 0519.10022
[38] J. H. Loxton, Automata and transcendence, in New advances in transcendence theory (Durham 1986), Cambridge University Press (1988), 215-228
[39] J. H. Loxton and A. J. van der Poorten, Transcendence and algebraic independence by a method of Mahler, in Transcendence theory: advances and applications (Proc. Conf., Univ. Cambridge, Cambridge, 1976), Academic Press, London (1977), 211-226
[40] J. H. Loxton and A. J. van der Poorten, Arithmetic properties of certain functions in several variables, J. Number Theory 9 (1977), 87-106 · Zbl 0339.10026
[41] J. H. Loxton and A. J. van der Poorten, Arithmetic properties of certain functions in several variables II, J. Aust. Math. Soc. 24 (1977), 393-408 · Zbl 0339.10027
[42] J. H. Loxton and A. J. van der Poorten, Arithmetic properties of certain functions in several variables III, Bull. Aust. Math. Soc. 16 (1977), 15-47 · Zbl 0339.10028
[43] J. H. Loxton and A. J. van der Poorten, Arithmetic properties of the solutions of a class of functional equations, J. Reine Angew. Math. 330 (1982), 159-172 · Zbl 0468.10019
[44] J. H. Loxton and A. J. van der Poorten, Arithmetic properties of automata: regular sequences, J. Reine Angew. Math. 392 (1988), 57-610 · Zbl 0656.10033
[45] D. Masser, A vanishing theorem for power series, Invent. Math. 67 (1982), 275-296 · Zbl 0481.10034
[46] D. Masser, Algebraic independence properties of the Hecke-Mahler series, Quart. J. Math. Oxford 50 (1999), 207-230 · Zbl 0929.11021
[47] D. Masser, Heights, transcendence, and linear independence on commutative group varieties, in Diophantine approximation (Cetraro, 2000), Lecture Notes in Math. 1819, Springer, Berlin (2003), 1-51 · Zbl 1049.11081
[48] Yu. V. Nesterenko, Algebraic independence of values of analytic functions, in Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), Math. Soc. Japan, Tokyo (1991), 447-457 · Zbl 0743.11035
[49] Yu. V. Nesterenko and A. B. Shidlovskii, On the linear independence of values of \(E\)-functions, Mat. Sb. 187 (1996), 93-108; translation in Sb. Math. 187 (1996), 1197-1211 · Zbl 0990.11051
[50] Ke. Nishioka, Algebraic function solutions of a certain class of functional equations, Arch. Math. 44 (1985), 330-335 · Zbl 0568.12014
[51] Ku. Nishioka, On a problem of Mahler for transcendency of function values, J. Aust. Math. Soc. 33 (1982), 386-393 · Zbl 0502.10018
[52] Ku. Nishioka, On a problem of Mahler for transcendency of function values II, Tsukuba J. Math. 7 (1983), 265-279 · Zbl 0542.10025
[53] Ku. Nishioka, New approach in Mahler’s method, J. Reine Angew. Math. 407 (1990), 202-219 · Zbl 0694.10035
[54] Ku. Nishioka, Algebraic independence by Mahler’s method and S-unit equations, Compos. Math. 92 (1994), 87-110 · Zbl 0802.11029
[55] Ku. Nishioka, Algebraic independence of Mahler functions and their values, Tohoku Math. J. 48 (1996), 51-70 · Zbl 0852.11036
[56] Ku. Nishioka, Mahler functions and transcendence, Lecture Notes in Math. 1631, Springer-Verlag, Berlin, 1997
[57] Ku. Nishioka and Se. Nishioka, Algebraic theory of difference equations and Mahler functions, Aequationes Math. 84 (2012), 245-259 · Zbl 1327.11052
[58] Ku. Nishioka and Se. Nishioka, Autonomous equations of Mahler type and transcendence, Tsukuba J. Math. 39 (2016), 251-257 · Zbl 1391.11091
[59] F. Pellarin, On the arithmetic properties of complex values of Hecke-Mahler series. I. The rank one case, Ann. Sc. Norm. Super. Pisa 5 (2006), 329-374 · Zbl 1116.11057
[60] F. Pellarin, Aspects de l’ind\'ependance alg\'ebrique en caract\'eristique non nulle (d’apr\`es Anderson, Brownawell, Denis, Papanikolas, Thakur, Yu, et al.), Ast\'erisque 317 (2008), Exp. No. 973, 205-242, S\'eminaire Bourbaki. Vol. 2006/2007
[61] F. Pellarin, An introduction to Mahler’s method for transcendence and algebraic independence, preprint 2010, arXiv :1005.1216v2[math.NT] · Zbl 1440.11137
[62] P. Philippon, Crit\`eres pour l’ind\'ependance alg\'ebrique, Inst. Hautes \'Etudes Sci. Publ. Math. 64 (1986), 5-52 · Zbl 0615.10044
[63] P. Philippon, Crit\`eres pour l’ind\'ependance alg\'ebrique dans les anneaux diophantiens, C. R. Acad. Sci. Paris 315 (1992), 511-515 · Zbl 0781.13011
[64] P. Philippon, Ind\'ependance alg\'ebrique et K-functions, J. Reine Angew. Math. 497 (1998), 1-15 · Zbl 0887.11032
[65] P. Philippon, Groupes de Galois et nombres automatiques, J. London Math. Soc. 95 (2015), 596-614 · Zbl 1391.11087
[66] A. J. van der Poorten, Propri\'et\'es arithm\'etiques et alg\'ebriques de functions satisfaisant une classe d’\'equations fonctionnelles, S\'eminaire de Th\'eorie des Nombres de Bordeaux (1974-1975), Exp. 7, 13 pp · Zbl 0331.10018
[67] A. J. van der Poorten, On the transcendence and algebraic independence of certain somewhat amusing numbers, S\'eminaire de Th\'eorie des Nombres de Bordeaux, (1975-1976), Exp. 14, 13 pp · Zbl 0356.10028
[68] A. J. van der Poorten, Remarks on automata, functional equations and transcendence, S\'eminaire de Th\'eorie des Nombres de Bordeaux (1986-1987), Exp. 27, 11pp
[69] B. Rand\'e, \'Equations Fonctionnelles de Mahler et Applications aux Suites \(p\)-r\'eguli\`eres, Th\`ese de doctorat, Universit\'e de Bordeaux I, Talence, 1992
[70] J. Roques, On the reduction modulo \(p\) of Mahler equations, Tohoku Math. J. 69 (2017), 55-65 · Zbl 1375.39003
[71] J. Roques, On the algebraic relations between Mahler functions, Trans. Amer. Math. Soc. 370 (2018), 321-355 · Zbl 1376.39002
[72] R. Sch\"afke and M. F. Singer, Consistent systems of linear differential and difference equations, J. Eur. Math. Soc. 21 (2019), no. 9, 2751-2792 · Zbl 1425.39003
[73] C. L. Siegel, \"Uber einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss., Phys. Math. Kl. (1929), 41-69 · JFM 56.0180.05
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.