×

A parametric study on supersonic/hypersonic flutter behavior of aero-thermo-elastic geometrically imperfect curved skin panel. (English) Zbl 1266.74025

Summary: The authors numerically investigate the effect of system parameters on the flutter of a curved skin panel forced by a supersonic/hypersonic unsteady flow. The aeroelastic model investigated includes third-order piston theory aerodynamics for modeling the flow-induced forces, and the von Kármán nonlinear strain-displacement relation in conjunction with the Kirchhoff plate hypothesis for the panel structural modeling. The authors also consider the effects of thermal degradation and Kelvin’s structural damping on time and temperature. Computational analysis and discussion of the findings are presented.

MSC:

74H55 Stability of dynamical problems in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74F05 Thermal effects in solid mechanics
76J20 Supersonic flows
76K05 Hypersonic flows
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Johns, D.J.: A survey of panel flutter. Presented at the 21st meeting of the AGARD Structures and Materials Panel in Nancy, France (1965)
[2] Jordan P.F.: The physical nature of panel flutter. Aeronaut. Digest 72, 34–38 (1956)
[3] Dowell E.H., Edwards J., Strganac T.W.: Non-linear aeroelasticity. J. Aircraft 5, 857–874 (2003) · doi:10.2514/2.6876
[4] Dowell E.H.: Aeroelasticity of Plates and Shells. Kluwer, Dordrecht, The Netherlands (1974) · Zbl 0306.73039
[5] Dowell, E.H.: Panel flutter. NASA SP-8004, 9
[6] Guo X., Mei C.: Application of aeroelastic modes on nonlinear supersonic panel flutter at elevated temperatures. Comput. Struct. 84, 1619–1628 (2006) · doi:10.1016/j.compstruc.2006.01.041
[7] Dugundji J.: Theoretical considerations of panel flutter at high supersonic Mach numbers. AIAA J. 4, 1257–1266 (1966) · Zbl 0202.57608 · doi:10.2514/3.3657
[8] Librescu L., Marzocca P., Silva W.A.: Supersonic/hypersonic flutter and postflutter of geometrically imperfect circular cylindrical panels. J. Spacecr. Rockets 39, 802–812 (2002) · doi:10.2514/2.3882
[9] Bolotin, V.V.: Nonconservative problems of the theory of elastic stability. In: Herrmann, G. (eds.) Corrected and Authorized Edition, Chap. 4, 1st edn, pp. 199–306. Pergamon, New York (translated from Russian) (1963) · Zbl 0121.41305
[10] Librescu L.: Aeroelastic stability of orthotropic heterogeneous thin panels in the vicinity of the flutter critical boundary. J. de Mécanique 4, 51–76 (1965)
[11] Librescu, L.: Mechanics of elastic stability. In: Elastostatics and kinetics of anisotropic and heterogeneous shell-type structures, aeroelastic stability of anisotropic multilayered thin panels, Chap. 1, 1st edn, 53–63, 106–158, Appendix A, 543–550. Leipholz, Noordhoff International, Leyden, The Netherlands (1975)
[12] Ashley H., Zartarian G.: Piston theory–a new aerodynamic tool for the aeroelastician. J. Aerospace Sci. 23, 1109–1118 (1956)
[13] Bisplinghoff R.L., Ashley H.: Principles of Aeroelasticity, pp. 217–234. Dover, New York (1996) · Zbl 0114.19802
[14] Dowell E.H.: Non-linear oscillations of a fluttering plate I. AIAA J. 4, 1267–1275 (1966) · doi:10.2514/3.3658
[15] Dowell E.H.: Non-linear oscillations of a fluttering plate II. AIAA J. 5, 1856–1862 (1967) · doi:10.2514/3.4316
[16] Dowell E.H.: Panel flutter: a review of the aeroelastic stability of plates and shells. AIAA J. 8, 385–399 (1970) · doi:10.2514/3.5680
[17] Moon F.C.: Chaotic and fractal dynamics. Wiley, New York (1992)
[18] Dowell E.H.: Flutter of a buckled plate as an example of chaotic motion of a deterministic autonomous system. J. Sound Vib. 85, 333–344 (1982) · doi:10.1016/0022-460X(82)90259-0
[19] Pezeshki C., Dowell E.H.: Generation and analysis of Lyapunov exponents for the buckled beam. Int. J. Non-Linear Mech. 24, 79–97 (1989) · doi:10.1016/0020-7462(89)90001-2
[20] Sipcic S.R.: Chaotic response of fluttering panel–the influence of maneuvering. Int. J. Non-linear Dyn. Chaos Eng. Syst. 1, 243–264 (1990) · doi:10.1007/BF01858296
[21] Sipcic S.R., Morino L.: Dynamic behavior of the fluttering two-dimensional panels on an airplane in pull-up maneuver. AIAA J. 29, 1304–1312 (1991) · doi:10.2514/3.10736
[22] Yamaguchi T., Nagai K.: Chaotic vibrations of a cylindrical shell-panel with an in-plane elastic-support at boundary. Int. J. Non-linear Dyn. Chaos Eng. Syst. 13, 259–277 (1997) · Zbl 0879.73036 · doi:10.1023/A:1008215831376
[23] Kuo Ch., Morino L., Dugundji J.: Perturbation and harmonic balance methods for non-linear panel flutter problem. AIAA J. 10, 1479–1484 (1972) · doi:10.2514/3.6645
[24] Chen Y., Leung A.Y.T.: Bifurcation and Chaos in Engineering. Springer, London (1998) · Zbl 0997.34500
[25] Hodges D.H.: A simplified algorithm for determining the stability of linear system. AIAA J. 15, 424–425 (1977) · doi:10.2514/3.7334
[26] Bolotin V.V., Grishko A.A., Kounadis A.N., Gantes C.J.: Non-linear panel flutter in remote post-critical domains. Int. J. Non-Linear Mech. 33, 753–764 (1998) · Zbl 1258.74093 · doi:10.1016/S0020-7462(97)00048-6
[27] Bolotin V.V., Petrovsky A.V., Grishko A.A.: Secondary bifurcation and global instability of an aeroelastic non-linear system in the divergence domain. J. Sound Vib. 191, 431–451 (1996) · doi:10.1006/jsvi.1996.0132
[28] Mei C., Abdel-Motagaly K., Chen R.: Review of non-linear panel flutter at supersonic and hypersonic speed. Appl. Mech. Rev. 52, 312–321 (1999) · doi:10.1115/1.3098919
[29] Bismarck-Nasr, M.N.: Structural dynamics in aeronautical engineering, (1st edn). In: Przemieniechi, J.S. (eds.) AIAA Education Series, Chap. 9. AIAA, Reston, VA, pp. 229–289 (1999)
[30] Dorsey, J.T. et al.: Metallic thermal protection system technology development: concepts, requirements and assessment overview. In: 40th Aerospace Science Meeting, AIAA 2002-0502, Reno, NV, 14–17 January 2002
[31] Librescu L., Marzocca P., Silva W.A.: Linear/non-linear supersonic panel flutter in a high-temperature field. J. Aircraft 41, 918–924 (2004) · doi:10.2514/1.679
[32] Gee D.J., Sipcic S.R.: Coupled thermal model for non-linear panel flutter. AIAA J. 37, 624–649 (1999) · doi:10.2514/2.765
[33] Fung Y.C.: The static stability of a two dimensional curved panel in a supersonic flow with an application to panel flutter. J. Aeronaut. Sci. 21, 556–565 (1954) · Zbl 0056.20303 · doi:10.2514/8.3122
[34] Houbolt, J.C.: A study of several aerothermoelastic problems of aircraft structures in high-speed flight. Mitteilungen aus dem Institute für Flugzeugstatik und Leichtbau, Verlag Leeman, Zürich, vol. 5 (1965)
[35] Schaeffer H.G., Heard W.L. Jr: Flutter of a flat panel subjected to a non-linear temperature distribution. AIAA J. 8, 1918–1923 (1965)
[36] Ventres C.S., Dowell E.H.: Comparison of theory and experiment for non-linear flutter of loaded plates. AIAA J. 8, 2022–2030 (1970) · Zbl 0223.73039 · doi:10.2514/3.6041
[37] Yang T.Y., Han A.D.: Flutter of thermally buckled finite element panels. AIAA J. 14, 975–977 (1976) · doi:10.2514/3.7173
[38] Xue D.Y., Mei C.: Finite element non-linear panel flutter with arbitrary temperatures in supersonic flow. AIAA J. 31, 154–162 (1993) · Zbl 0779.73075 · doi:10.2514/3.11332
[39] Zhou R.C., Xue D.Y., Mei C.: Finite element time domain modal formulation for non-linear flutter of composite panels. AIAA J. 32, 2044–2052 (1994) · Zbl 0826.73063 · doi:10.2514/3.12250
[40] Pourtakdoust S.H., Fazelzadeh S.A.: Non-linear aerothermoelastic behavior of skin panel with wall shear stress effect. J. Thermal Stress. 28, 147–169 (2005) · doi:10.1080/014957390523714
[41] Bein, T., Friedmann, P.P., Zhong, X., Nydick, I.: Hypersonic flutter of a curved shallow panel with aerodynamic heating. AIAA Paper 93-1318 (1993)
[42] Nowacki W.: Thermo-elasticity. Pergamon Press, New York (1986) · Zbl 0604.73020
[43] Ellen C.H.: Influence of structural damping on panel flutter. AIAA J. 6, 2169–2174 (1968) · doi:10.2514/3.4951
[44] Drozdov A.: Viscoelastic Structures: Mechanics of Growth and Aging. Academic Press, New York (1998) · Zbl 0990.74002
[45] Lottati I.: The role of damping on supersonic panel flutter. AIAA J. 23, 1640–1642 (1985) · doi:10.2514/3.9141
[46] Abbas, L.K., Xiaoting, R., Marzocca, P., Abdalla, M., De Breuker, R.: Non-linear aero-thermo-visco-elastic behavior of geometrically imperfect curved skin panel: flutter and post-flutter Analysis. In: Proceedings 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Palm Springs, California, 4–7 May 2009, AIAA Paper 2009-2596 · Zbl 1266.74025
[47] Resende, H.B.: Hypersonic panel flutter in a rarefied atmosphere. NASA Contractor Report 4514, Grant NGL-05-020-243 (1993)
[48] Fung Y.C.: Two-dimensional panel flutter. J. Aerospace Sci. 25, 147–159 (1958) · Zbl 0086.40104
[49] Morino L.: A perturbation method for treating non-linear panel flutter problems. AIAA J. 7, 405–411 (1969) · Zbl 0183.54804 · doi:10.2514/3.5121
[50] Gray C.E. Jr, Mei C.: Large-amplitude finite element flutter analysis of composite panel in hypersonic flow. AIAA J. 31, 1090–1099 (1993) · Zbl 0779.73060 · doi:10.2514/3.49051
[51] Fazelzadeh S.A.: Chaotic analysis of non-linear curved-panel flutter under supersonic flow. Dyn. Continuous Discret. Impuls. Syst. Ser. B Appl. Algorithms 14, 793–810 (2007) · Zbl 1190.76149
[52] Pourtakdoust S.H., Fazelzadeh S.A.: Chaotic analysis of non-linear viscoelastic panel flutter in supersonic flow. Int. J. Non-linear Dyn. Chaos Eng. Syst. 32, 387–404 (2003) · Zbl 1081.74512 · doi:10.1023/A:1025616916033
[53] Dowell E.H.: Non-linear flutter of curved plates, part 1. AIAA J. 7, 424–431 (1969) · Zbl 0175.23104 · doi:10.2514/3.5124
[54] Dowell E.H.: Non-linear flutter of curved plates, part 2. AIAA J. 8, 259–261 (1970) · doi:10.2514/3.5653
[55] Eastep F.E., McIntosh S.C. Jr: Analysis of non-linear panel flutter and response under random excitation or non-linear aerodynamic loading. AIAA J. 9, 411–418 (1971) · Zbl 0224.73069 · doi:10.2514/3.6195
[56] Dowell E.H.: The flutter of infinitely long plates and shells, part 1: plate. AIAA J. 4, 1370–1377 (1966) · doi:10.2514/3.3680
[57] Dowell E.H.: The flutter of infinitely long plates and shells, part 2: cylindrical shell. AIAA J. 4, 1510–1518 (1966) · doi:10.2514/3.3728
[58] Amabili M., Pellicano F.: Non-linear supersonic flutter of circular cylindrical shells. AIAA J. 39, 564–573 (2001) · doi:10.2514/2.1365
[59] Gee D.J.: Numerical continuation applied to panel flutter. Int. J. Non-linear Dyn. Chaos Eng. Syst. 22, 271–280 (2000) · Zbl 0966.74020 · doi:10.1023/A:1008374401581
[60] Librescu L., Gianfranco C., Marzocca P.: Implications of cubic physical/aerodynamic nonlinearities on the character of the flutter instability boundary. Int. J. Non-Linear Mech. 38, 173–199 (2003) · Zbl 1346.74037 · doi:10.1016/S0020-7462(01)00054-3
[61] Visual Numerics Inc.: IMSL Fortran 90 Routines and Functions, Visual Numerics, Houston (1998)
[62] Bolotin V.V., Grishko A.A., Kounadis A.N., Gantes C.J.: Influence of initial conditions on the postcritical behavior of a nonlinear aeroelastic system. Nonlinear Dyn. 15, 63–81 (1998) · Zbl 0910.73046 · doi:10.1023/A:1008204409853
[63] Bolotin V.V., Grishko A.A., Kounadis A.N., Gantes C.J.: The fluttering panel as a continuous nonlinear nonconservative system. J. Vib. Control 7, 233–247 (2001) · Zbl 1063.74028 · doi:10.1177/107754630100700206
[64] Ko, W.L.: Analysis of hypersonic aircraft hat-stiffened panels with varying face sheet geometry and fiber orientation. NASA Technical Memorandum 4770 (1996)
[65] Librescu L., Souza M.A.: Postbuckling of geometrically imperfect shear-deformable flat panels under combined thermal and compressive edge loadings. J. Appl. Mech. Trans. ASME 60, 526–533 (1993) · Zbl 0775.73104 · doi:10.1115/1.2900825
[66] Librescu L., Lin W., Nemeth M.P., Starnes J.H.: Vibration of geometrically imperfect panels subjected to thermal and mechanical loads. J. Spacecr. Rockets 33, 285–291 (1996) · doi:10.2514/3.26754
[67] Librescu L., Lin W., Nemeth M.P., Starnes J.H.: Frequency-load interaction of geometrically imperfect curved panels subjected to heating. AIAA J. 34, 166–177 (1996) · doi:10.2514/3.13037
[68] Librescu L., Lin W.: Vibration of thermomechanically loaded flat and curved panels taking into account geometric imperfections and tangential edge restraints. Int. J. Solids Struct. 34, 2161–2181 (1997) · Zbl 0944.74562 · doi:10.1016/S0020-7683(96)00025-X
[69] Culler A.J., McNamara J.J.: Studies on fluid–thermal–structural coupling for aero-thermo-elasticity in hypersonic flow. AIAA J. 48, 1721–1738 (2010) · doi:10.2514/1.J050193
[70] Hosseini M., Fazelzadeh S.A., Marzocca P.: Chaotic and bifurcation dynamic behavior of functionally graded curved panels under aero-thermal load. Int. J. Bifurcat. Chaos 21, 931–954 (2011) · Zbl 1215.76051 · doi:10.1142/S0218127411028738
[71] Marzocca P., Fazelzadeh S.A., Hosseini M.: A review of nonlinear aero-thermo-elasticity of functionally graded panels. J. Thermal Stress. 34, 536–568 (2011) · Zbl 1215.76051 · doi:10.1080/01495739.2011.564016
[72] Fletcher C.A.J.: Computational Galerkin Methods. Springer, New York (1984) · Zbl 0533.65069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.