×

Character varieties. (English) Zbl 1291.14022

Moduli spaces of representations (also known as character varieties) are ubiquitous in modern mathematics; the extensive bibliography of this paper attests to this fact. The paper under review, both well-written and detailed, gives a thorough treatment of many of their properties.
Let \(\Gamma\) is finitely generated group, and let \(G\) be a reductive affine group scheme acting by conjugation on the algebraic scheme \(\mathcal{H}om(\Gamma, G)\). The Geometric Invariant Theory quotient by this action, denoted \(\mathcal{X}_\Gamma(G)\), is called the \(G\)-character scheme of \(\Gamma\); and is one of the main objects of study in this paper. The subspace of geometric points (maximal ideals) of \(\mathcal{X}_\Gamma(G)\) is called the \(G\)-character variety of \(\Gamma\).
This paper contains many theorems and preceding results of practical importance in the theory. Perhaps the main theorem of the paper describes the tangent space at a point \([\rho]\) in \(\mathcal{X}_\Gamma(G)\). Contrary to popular belief, the tangent space is not always isomorphic to a cohomology space, although this theorem shows that the tangent space is the tangent space of a quotient of a cohomology space when the orbit of \(\rho\) is closed, and \(\rho\) is non-singular in \(\mathcal{H}om(\Gamma, G)\). Another main result shown in this paper concerns Lagrangian subspaces of \(G\)-character varieties of surface groups.
One of the highlights of the paper is that the author starts with a general discussion of reductive groups and their associated action on \(\mathcal{H}om(\Gamma, G)\), and builds from there with explicit constructions and proofs or concrete references. Many examples are given to show how results are sharp, and definitions are precise and general.
Although many of the results can be found, in part or in special cases, in other earlier works, this treatise is one of the best comprehensive treatments this reviewer knows. I recommend this paper to both beginner and expert alike interested in practically working in the important and fascinating theory of character varieties.

MSC:

14D20 Algebraic moduli problems, moduli of vector bundles
14L24 Geometric invariant theory
57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Selman Akbulut and John D. McCarthy, Casson’s invariant for oriented homology 3-spheres, Mathematical Notes, vol. 36, Princeton University Press, Princeton, NJ, 1990. An exposition. · Zbl 0695.57011
[2] Michael Atiyah, The geometry and physics of knots, Lezioni Lincee. [Lincei Lectures], Cambridge University Press, Cambridge, 1990. · Zbl 0729.57002
[3] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523 – 615. · Zbl 0509.14014 · doi:10.1098/rsta.1983.0017
[4] Silvana Abeasis and Marilena Pittaluga, On a minimal set of generators for the invariants of 3\times 3 matrices, Comm. Algebra 17 (1989), no. 2, 487 – 499. · Zbl 0672.16016 · doi:10.1080/00927878908823740
[5] A. Alekseev, E. Meinrenken, and C. Woodward, Duistermaat-Heckman measures and moduli spaces of flat bundles over surfaces, Geom. Funct. Anal. 12 (2002), no. 1, 1 – 31. · Zbl 1008.53065 · doi:10.1007/s00039-002-8234-z
[6] Michèle Audin, Lectures on gauge theory and integrable systems, Gauge theory and symplectic geometry (Montreal, PQ, 1995) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 488, Kluwer Acad. Publ., Dordrecht, 1997, pp. 1 – 48. · Zbl 0873.58016
[7] S. Baseilhac, Chern Simons theory in dimension three, www-fourier.ujf-grenoble.fr/\( \sim \)baseilha
[8] Leila Ben Abdelghani, Variété des caractères et slice étale de l’espace des représentations d’un groupe, Ann. Fac. Sci. Toulouse Math. (6) 11 (2002), no. 1, 19 – 32 (French, with English and French summaries). · Zbl 1056.20032
[9] Hans U. Boden and Cynthia L. Curtis, Splicing and the \?\?\(_{2}\)(\Bbb C) Casson invariant, Proc. Amer. Math. Soc. 136 (2008), no. 7, 2615 – 2623. · Zbl 1148.57015
[10] Hans U. Boden and Cynthia L. Curtis, The \?\?\(_{2}\)(\Bbb C) Casson invariant for Seifert fibered homology spheres and surgeries on twist knots, J. Knot Theory Ramifications 15 (2006), no. 7, 813 – 837. · Zbl 1115.57008 · doi:10.1142/S0218216506004762
[11] Hans U. Boden and Christopher M. Herald, The \?\?(3) Casson invariant for integral homology 3-spheres, J. Differential Geom. 50 (1998), no. 1, 147 – 206. · Zbl 0934.57013
[12] V. V. Benyash-Krivets, The transcendence basis of the field of functions of the variety of characters of a free group, Dokl. Akad. Nauk BSSR 33 (1989), no. 4, 297 – 301, 380 (Russian, with English summary). · Zbl 0713.20021
[13] V. V. Benyash-Krivets, Varieties of two-dimensional characters of groups, and amalgamated products, Dokl. Nats. Akad. Nauk Belarusi 44 (2000), no. 1, 5 – 7, 122 (Russian, with English and Russian summaries). · Zbl 1156.20302
[14] V. V. Benyash-Krivets, Character varieties of finitely generated groups, Vestsī Nats. Akad. Navuk Belarusī Ser. Fīz.-Mat. Navuk 1 (2002), 19 – 24, 125 (Russian, with English and Russian summaries). · Zbl 1065.20043
[15] V. V. Benyash-Krivets and V. I. Chernousov, Varieties of representations of fundamental groups of compact nonoriented surfaces, Mat. Sb. 188 (1997), no. 7, 47 – 92 (Russian, with Russian summary); English transl., Sb. Math. 188 (1997), no. 7, 997 – 1039. · Zbl 0960.57001 · doi:10.1070/SM1997v188n07ABEH000242
[16] C. Blanchet, N. Habegger, G. Masbaum, and P. Vogel, Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995), no. 4, 883 – 927. · Zbl 0887.57009 · doi:10.1016/0040-9383(94)00051-4
[17] Hans U. Boden and Stefan Friedl, Metabelian \?\?(\?,\Bbb C) representations of knot groups, Pacific J. Math. 238 (2008), no. 1, 7 – 25. · Zbl 1154.57004 · doi:10.2140/pjm.2008.238.7
[18] M. Boileau and S. Boyer, On character varieties, sets of discrete characters, and non-zero degree maps, arXiv.org: 0701384 · Zbl 1257.57021
[19] Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. · Zbl 0726.20030
[20] S. Boyer, E. Luft, and X. Zhang, On the algebraic components of the \?\?(2,\Bbb C) character varieties of knot exteriors, Topology 41 (2002), no. 4, 667 – 694. · Zbl 0998.57017 · doi:10.1016/S0040-9383(00)00043-4
[21] Michael Bate, Benjamin Martin, and Gerhard Röhrle, A geometric approach to complete reducibility, Invent. Math. 161 (2005), no. 1, 177 – 218. · Zbl 1092.20038 · doi:10.1007/s00222-004-0425-9
[22] S. Boyer and A. Nicas, Varieties of group representations and Casson’s invariant for rational homology 3-spheres, Trans. Amer. Math. Soc. 322 (1990), no. 2, 507 – 522. · Zbl 0707.57009
[23] S. Boyer and X. Zhang, Finite Dehn surgery on knots, J. Amer. Math. Soc. 9 (1996), no. 4, 1005 – 1050. · Zbl 0936.57010
[24] S. Boyer and X. Zhang, On Culler-Shalen seminorms and Dehn filling, Ann. of Math. (2) 148 (1998), no. 3, 737 – 801. · Zbl 1007.57016 · doi:10.2307/121031
[25] S. Boyer and X. Zhang, On simple points of character varieties of 3-manifolds, Knots in Hellas ’98 (Delphi), Ser. Knots Everything, vol. 24, World Sci. Publ., River Edge, NJ, 2000, pp. 27 – 35. · Zbl 0971.57025 · doi:10.1142/9789812792679_0003
[26] Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. · Zbl 0584.20036
[27] Stuart Bratholdt and Daryl Cooper, On the topology of the character variety of a free group, Rend. Istit. Mat. Univ. Trieste 32 (2001), no. suppl. 1, 45 – 53 (2002). Dedicated to the memory of Marco Reni. · Zbl 1062.14505
[28] G. W. Brumfiel and H. M. Hilden, \?\?(2) representations of finitely presented groups, Contemporary Mathematics, vol. 187, American Mathematical Society, Providence, RI, 1995. · Zbl 0838.20006
[29] Doug Bullock, Rings of \?\?\(_{2}\)(\?)-characters and the Kauffman bracket skein module, Comment. Math. Helv. 72 (1997), no. 4, 521 – 542. · Zbl 0907.57010 · doi:10.1007/s000140050032
[30] Marc Burger, Alessandra Iozzi, and Anna Wienhard, Surface group representations with maximal Toledo invariant, C. R. Math. Acad. Sci. Paris 336 (2003), no. 5, 387 – 390 (English, with English and French summaries). · Zbl 1035.32013 · doi:10.1016/S1631-073X(03)00065-7
[31] M. A. de Cataldo, T. Hausel and L. Migliorini, Topology of Hitchin systems and Hodge theory of character varieties, arXiv:1004.1420 · Zbl 1375.14047
[32] L. Charles and J. Marché, Multicurves and regular functions on the representation variety of a surface in \( SU(2),\) arXiv: 0901.3064
[33] D. Cooper and D. D. Long, Representation theory and the \?-polynomial of a knot, Chaos Solitons Fractals 9 (1998), no. 4-5, 749 – 763. Knot theory and its applications. · Zbl 0935.57008 · doi:10.1016/S0960-0779(97)00102-1
[34] D. Cooper, M. Culler, H. Gillet, D. D. Long, and P. B. Shalen, Plane curves associated to character varieties of 3-manifolds, Invent. Math. 118 (1994), no. 1, 47 – 84. · Zbl 0842.57013 · doi:10.1007/BF01231526
[35] David Cox, John Little, and Donal O’Shea, Ideals, varieties, and algorithms, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1992. An introduction to computational algebraic geometry and commutative algebra. · Zbl 0756.13017
[36] Marc Culler and Peter B. Shalen, Varieties of group representations and splittings of 3-manifolds, Ann. of Math. (2) 117 (1983), no. 1, 109 – 146. · Zbl 0529.57005 · doi:10.2307/2006973
[37] Cynthia L. Curtis, An intersection theory count of the \?\?\(_{2}\)(\Bbb C)-representations of the fundamental group of a 3-manifold, Topology 40 (2001), no. 4, 773 – 787. · Zbl 0979.57006 · doi:10.1016/S0040-9383(99)00083-X
[38] Georgios D. Daskalopoulos, The topology of the space of stable bundles on a compact Riemann surface, J. Differential Geom. 36 (1992), no. 3, 699 – 746. · Zbl 0785.58014
[39] G. Daskalopoulos, S. Dostoglou, and R. Wentworth, On the Morgan-Shalen compactification of the \?\?(2,\?) character varieties of surface groups, Duke Math. J. 101 (2000), no. 2, 189 – 207. · Zbl 0974.58009 · doi:10.1215/S0012-7094-00-10121-4
[40] G. Daskalopoulos, J. Weitsman, R. Wentworth and G. Wilkin, Morse Theory and Hyper-Kahler Kirwan Surjectivity for Higgs Bundles, arXiv:math/0701560. · Zbl 1230.14046
[41] G. D. Daskalopoulos, R. A. Wentworth and G. Wilkin, Cohomology of \( SL(2,C)\) character varieties of surface groups and the action of the Torelli group, arXiv:0808.0131. · Zbl 1213.57021
[42] Igor V. Dolgachev, Introduction to geometric invariant theory, Lecture Notes Series, vol. 25, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1994. · Zbl 0826.14008
[43] Nathan M. Dunfield, Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds, Invent. Math. 136 (1999), no. 3, 623 – 657. · Zbl 0928.57012 · doi:10.1007/s002220050321
[44] Nathan M. Dunfield and Stavros Garoufalidis, Non-triviality of the \?-polynomial for knots in \?³, Algebr. Geom. Topol. 4 (2004), 1145 – 1153. · Zbl 1063.57012 · doi:10.2140/agt.2004.4.1145
[45] David Eisenbud and Joe Harris, The geometry of schemes, Graduate Texts in Mathematics, vol. 197, Springer-Verlag, New York, 2000. · Zbl 0960.14002
[46] Carlos Florentino and Sean Lawton, The topology of moduli spaces of free group representations, Math. Ann. 345 (2009), no. 2, 453 – 489. · Zbl 1200.14093 · doi:10.1007/s00208-009-0362-4
[47] C. Florentino and S. Lawton, Singularities of free group character varieties, arXiv:0907.4720 · Zbl 1264.14064
[48] John Fogarty, Invariant theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. · Zbl 0686.14014
[49] Daniel S. Freed, Classical Chern-Simons theory. I, Adv. Math. 113 (1995), no. 2, 237 – 303. · Zbl 0844.58039 · doi:10.1006/aima.1995.1039
[50] Charles Frohman and Răzvan Gelca, Skein modules and the noncommutative torus, Trans. Amer. Math. Soc. 352 (2000), no. 10, 4877 – 4888. · Zbl 0951.57007
[51] Charles Frohman, Răzvan Gelca, and Walter Lofaro, The A-polynomial from the noncommutative viewpoint, Trans. Amer. Math. Soc. 354 (2002), no. 2, 735 – 747. · Zbl 0980.57002 · doi:10.1090/S0002-9947-01-02889-6
[52] William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. · Zbl 0744.22001
[53] O. Garcia-Prada, P. B. Gothen and I. Mundet i Riera, Higgs bundles and surface group representations in the real symplectic group, arXiv:0809.0576.
[54] Stavros Garoufalidis, On the characteristic and deformation varieties of a knot, Proceedings of the Casson Fest, Geom. Topol. Monogr., vol. 7, Geom. Topol. Publ., Coventry, 2004, pp. 291 – 309. · Zbl 1080.57014 · doi:10.2140/gtm.2004.7.291
[55] Răzvan Gelca, On the relation between the \?-polynomial and the Jones polynomial, Proc. Amer. Math. Soc. 130 (2002), no. 4, 1235 – 1241. · Zbl 0994.57014
[56] William M. Goldman, Representations of fundamental groups of surfaces, Geometry and topology (College Park, Md., 1983/84) Lecture Notes in Math., vol. 1167, Springer, Berlin, 1985, pp. 95 – 117. · doi:10.1007/BFb0075218
[57] William M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984), no. 2, 200 – 225. · Zbl 0574.32032 · doi:10.1016/0001-8708(84)90040-9
[58] William M. Goldman, Geometric structures on manifolds and varieties of representations, Geometry of group representations (Boulder, CO, 1987) Contemp. Math., vol. 74, Amer. Math. Soc., Providence, RI, 1988, pp. 169 – 198. · doi:10.1090/conm/074/957518
[59] William M. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. 85 (1986), no. 2, 263 – 302. · Zbl 0619.58021 · doi:10.1007/BF01389091
[60] William M. Goldman, Topological components of spaces of representations, Invent. Math. 93 (1988), no. 3, 557 – 607. · Zbl 0655.57019 · doi:10.1007/BF01410200
[61] William M. Goldman, The modular group action on real \?\?(2)-characters of a one-holed torus, Geom. Topol. 7 (2003), 443 – 486. · Zbl 1037.57001 · doi:10.2140/gt.2003.7.443
[62] William M. Goldman, The complex-symplectic geometry of \?\?(2,\Bbb C)-characters over surfaces, Algebraic groups and arithmetic, Tata Inst. Fund. Res., Mumbai, 2004, pp. 375 – 407. · Zbl 1089.53060
[63] William M. Goldman, An ergodic action of the outer automorphism group of a free group, Geom. Funct. Anal. 17 (2007), no. 3, 793 – 805. · Zbl 1139.57002 · doi:10.1007/s00039-007-0609-8
[64] W. Goldman, Trace coordinates on Fricke spaces of some simple hyperbolic surfaces, preprint. · Zbl 1175.30043
[65] William M. Goldman and John J. Millson, The deformation theory of representations of fundamental groups of compact Kähler manifolds, Bull. Amer. Math. Soc. (N.S.) 18 (1988), no. 2, 153 – 158. · Zbl 0663.53056
[66] William M. Goldman and John J. Millson, The deformation theory of representations of fundamental groups of compact Kähler manifolds, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 43 – 96. · Zbl 0678.53059
[67] F. González-Acuña and José María Montesinos-Amilibia, On the character variety of group representations in \?\?(2,\?) and \?\?\?(2,\?), Math. Z. 214 (1993), no. 4, 627 – 652. · Zbl 0799.20040 · doi:10.1007/BF02572429
[68] V. V. Gorbatsevich and A. L. Onishchik, Lie transformation groups [see MR0950861 (89m:22010)], Lie groups and Lie algebras, I, Encyclopaedia Math. Sci., vol. 20, Springer, Berlin, 1993, pp. 95 – 235.
[69] O. Guichard and A. Wienhard, Topological Invariants of Anosov Representations, J. of Topology, to appear, arXiv:0907.0273v2. · Zbl 1225.57012
[70] Sergei Gukov, Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial, Comm. Math. Phys. 255 (2005), no. 3, 577 – 627. · Zbl 1115.57009 · doi:10.1007/s00220-005-1312-y
[71] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. · Zbl 0367.14001
[72] Tamás Hausel, Emmanuel Letellier, and Fernando Rodriguez Villegas, Topology of character varieties and representation of quivers, C. R. Math. Acad. Sci. Paris 348 (2010), no. 3-4, 131 – 135 (English, with English and French summaries). · Zbl 1200.14096 · doi:10.1016/j.crma.2010.01.025
[73] Tamás Hausel and Michael Thaddeus, Relations in the cohomology ring of the moduli space of rank 2 Higgs bundles, J. Amer. Math. Soc. 16 (2003), no. 2, 303 – 327. · Zbl 1015.14018
[74] Michael Heusener and Joan Porti, Deformations of reducible representations of 3-manifold groups into \?\?\?\(_{2}\)(\Bbb C), Algebr. Geom. Topol. 5 (2005), 965 – 997. · Zbl 1082.57007 · doi:10.2140/agt.2005.5.965
[75] Michael Heusener and Joan Porti, The variety of characters in \?\?\?\(_{2}\)(\Bbb C), Bol. Soc. Mat. Mexicana (3) 10 (2004), no. Special Issue, 221 – 237. · Zbl 1100.57014
[76] Hugh M. Hilden, María Teresa Lozano, and José María Montesinos-Amilibia, On the character variety of tunnel number 1 knots, J. London Math. Soc. (2) 62 (2000), no. 3, 938 – 950. · Zbl 1018.57002 · doi:10.1112/S0024610700001605
[77] Hugh M. Hilden, María Teresa Lozano, and José María Montesinos Amilibia, Character varieties and peripheral polynomials of a class of knots, J. Knot Theory Ramifications 12 (2003), no. 8, 1093 – 1130. · Zbl 1057.57005 · doi:10.1142/S0218216503002950
[78] N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), no. 1, 59 – 126. · Zbl 0634.53045 · doi:10.1112/plms/s3-55.1.59
[79] N. J. Hitchin, Lie groups and Teichmüller space, Topology 31 (1992), no. 3, 449 – 473. · Zbl 0769.32008 · doi:10.1016/0040-9383(92)90044-I
[80] Robert D. Horowitz, Characters of free groups represented in the two-dimensional special linear group, Comm. Pure Appl. Math. 25 (1972), 635 – 649. · Zbl 1184.20009 · doi:10.1002/cpa.3160250602
[81] Robert D. Horowitz, Induced automorphisms on Fricke characters of free groups, Trans. Amer. Math. Soc. 208 (1975), 41 – 50. · Zbl 0306.20027
[82] Jim Hoste and Patrick D. Shanahan, A formula for the A-polynomial of twist knots, J. Knot Theory Ramifications 13 (2004), no. 2, 193 – 209. · Zbl 1057.57010 · doi:10.1142/S0218216504003081
[83] James E. Humphreys, Linear algebraic groups, Springer-Verlag, New York-Heidelberg, 1975. Graduate Texts in Mathematics, No. 21. · Zbl 0325.20039
[84] Lisa C. Jeffrey, Symplectic forms on moduli spaces of flat connections on 2-manifolds, Geometric topology (Athens, GA, 1993) AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc., Providence, RI, 1997, pp. 268 – 281. · Zbl 0904.57009
[85] Lisa C. Jeffrey, Group cohomology construction of the cohomology of moduli spaces of flat connections on 2-manifolds, Duke Math. J. 77 (1995), no. 2, 407 – 429. · Zbl 0870.57013 · doi:10.1215/S0012-7094-95-07712-6
[86] Lisa C. Jeffrey, Flat connections on oriented 2-manifolds, Bull. London Math. Soc. 37 (2005), no. 1, 1 – 14. · Zbl 1063.53085 · doi:10.1112/S002460930400373X
[87] Lisa C. Jeffrey and Frances C. Kirwan, Intersection theory on moduli spaces of holomorphic bundles of arbitrary rank on a Riemann surface, Ann. of Math. (2) 148 (1998), no. 1, 109 – 196. · Zbl 0949.14021 · doi:10.2307/120993
[88] Lisa C. Jeffrey and Jonathan Weitsman, Half density quantization of the moduli space of flat connections and Witten’s semiclassical manifold invariants, Topology 32 (1993), no. 3, 509 – 529. · Zbl 0811.57017 · doi:10.1016/0040-9383(93)90003-E
[89] D. Johnson and J. J. Millson, Deformation Spaces Associated to Compact Hyperbolic Manifolds, in “Discrete Groups in Geometry and Analysis”, Proceedings of a Conference Held at Yale Univeristy in Honor of G.D. Mostow on his Sixtieth Birthday. · Zbl 0613.53032
[90] M. Kapovich, lecture at CRM, Montreal 2001.
[91] M. Kapovich, private communication.
[92] Michael Kapovich and John J. Millson, On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 88 (1998), 5 – 95 (1999). · Zbl 0982.20023
[93] Paul Kirk and Eric Klassen, Chern-Simons invariants of 3-manifolds decomposed along tori and the circle bundle over the representation space of \?², Comm. Math. Phys. 153 (1993), no. 3, 521 – 557. · Zbl 0789.57011
[94] P. B. Kronheimer and T. S. Mrowka, Dehn surgery, the fundamental group and SU(2), Math. Res. Lett. 11 (2004), no. 5-6, 741 – 754. · Zbl 1084.57006 · doi:10.4310/MRL.2004.v11.n6.a3
[95] A. D. King and P. E. Newstead, On the cohomology ring of the moduli space of rank 2 vector bundles on a curve, Topology 37 (1998), no. 2, 407 – 418. · Zbl 0913.14008 · doi:10.1016/S0040-9383(97)00041-4
[96] Frances Kirwan, The cohomology rings of moduli spaces of bundles over Riemann surfaces, J. Amer. Math. Soc. 5 (1992), no. 4, 853 – 906. · Zbl 0804.14010
[97] Sean Lawton, Generators, relations and symmetries in pairs of 3\times 3 unimodular matrices, J. Algebra 313 (2007), no. 2, 782 – 801. · Zbl 1119.13004 · doi:10.1016/j.jalgebra.2007.01.003
[98] Sean Lawton, Poisson geometry of \?\?(3,\Bbb C)-character varieties relative to a surface with boundary, Trans. Amer. Math. Soc. 361 (2009), no. 5, 2397 – 2429. · Zbl 1171.53052
[99] Sean Lawton, Minimal affine coordinates for \?\?(3,\Bbb C) character varieties of free groups, J. Algebra 320 (2008), no. 10, 3773 – 3810. · Zbl 1157.14030 · doi:10.1016/j.jalgebra.2008.06.031
[100] Sean Lawton, Obtaining the one-holed torus from pants: duality in an \?\?(3,\Bbb C)-character variety, Pacific J. Math. 242 (2009), no. 1, 131 – 142. · Zbl 1170.53067 · doi:10.2140/pjm.2009.242.131
[101] S. Lawton, Algebraic Independence in SL(3,C) Character Varieties of Free Groups, aXiv:0807.0798
[102] Sean Lawton and Elisha Peterson, Spin networks and \?\?(2,\Bbb C)-character varieties, Handbook of Teichmüller theory. Vol. II, IRMA Lect. Math. Theor. Phys., vol. 13, Eur. Math. Soc., Zürich, 2009, pp. 685 – 730. · Zbl 1180.20036 · doi:10.4171/055-1/17
[103] Le Ty Kuok Tkhang, Varieties of representations and their subvarieties of cohomology jumps for knot groups, Mat. Sb. 184 (1993), no. 2, 57 – 82 (Russian, with Russian summary); English transl., Russian Acad. Sci. Sb. Math. 78 (1994), no. 1, 187 – 209. · Zbl 0836.57004 · doi:10.1070/SM1994v078n01ABEH003464
[104] Thang T. Q. Lê, The colored Jones polynomial and the \?-polynomial of knots, Adv. Math. 207 (2006), no. 2, 782 – 804. · Zbl 1114.57014 · doi:10.1016/j.aim.2006.01.006
[105] Jun Li, The space of surface group representations, Manuscripta Math. 78 (1993), no. 3, 223 – 243. · Zbl 0803.32020 · doi:10.1007/BF02599310
[106] D. D. Long and A. W. Reid, Commensurability and the character variety, Math. Res. Lett. 6 (1999), no. 5-6, 581 – 591. · Zbl 0962.57006 · doi:10.4310/MRL.1999.v6.n5.a11
[107] D. D. Long and A. W. Reid, Integral points on character varieties, Math. Ann. 325 (2003), no. 2, 299 – 321. · Zbl 1048.57009 · doi:10.1007/s00208-002-0380-y
[108] Alexander Lubotzky and Andy R. Magid, Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc. 58 (1985), no. 336, xi+117. · Zbl 0598.14042 · doi:10.1090/memo/0336
[109] Domingo Luna, Slices étales, Sur les groupes algébriques, Soc. Math. France, Paris, 1973, pp. 81 – 105. Bull. Soc. Math. France, Paris, Mémoire 33 (French). · Zbl 0286.14014
[110] E. Meinrenken, Witten’s formulas for intersection pairings on moduli spaces of flat \?-bundles, Adv. Math. 197 (2005), no. 1, 140 – 197. · Zbl 1085.53076 · doi:10.1016/j.aim.2004.10.002
[111] E. Meinrenken and C. Woodward, Moduli spaces of flat connections on \( 2\)-manifolds, cobordism, and Witten’s volume formulas. · Zbl 1037.53058
[112] John W. Morgan and Peter B. Shalen, Valuations, trees, and degenerations of hyperbolic structures. I, Ann. of Math. (2) 120 (1984), no. 3, 401 – 476. · Zbl 0583.57005 · doi:10.2307/1971082
[113] Kimihiko Motegi, Haken manifolds and representations of their fundamental groups in \?\?(2,\?), Topology Appl. 29 (1988), no. 3, 207 – 212. · Zbl 0647.57007 · doi:10.1016/0166-8641(88)90019-3
[114] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. · Zbl 0797.14004
[115] Kazunori Nakamoto, Representation varieties and character varieties, Publ. Res. Inst. Math. Sci. 36 (2000), no. 2, 159 – 189. · Zbl 1070.14503 · doi:10.2977/prims/1195143100
[116] M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. (2) 82 (1965), 540 – 567. · Zbl 0171.04803 · doi:10.2307/1970710
[117] P. E. Newstead, Introduction to moduli problems and orbit spaces, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 51, Tata Institute of Fundamental Research, Bombay; by the Narosa Publishing House, New Delhi, 1978. · Zbl 0411.14003
[118] A. G. Oliveira, Representations of surface groups in the projective general linear group, Int. J. of Math., in press. · Zbl 1213.14023
[119] Doug Pickrell and Eugene Z. Xia, Ergodicity of mapping class group actions on representation varieties. I. Closed surfaces, Comment. Math. Helv. 77 (2002), no. 2, 339 – 362. · Zbl 1004.22010 · doi:10.1007/s00014-002-8343-1
[120] V. P. Platonov and V. V. Benyash-Krivets, Character rings of representations of finitely generated groups, Trudy Mat. Inst. Steklov. 183 (1990), 169 – 178, 227 (Russian). Translated in Proc. Steklov Inst. Math. 1991, no. 4, 203 – 213; Galois theory, rings, algebraic groups and their applications (Russian). · Zbl 0766.20008
[121] I. R. Shafarevich , Algebraic geometry. IV, Encyclopaedia of Mathematical Sciences, vol. 55, Springer-Verlag, Berlin, 1994. Linear algebraic groups. Invariant theory; A translation of Algebraic geometry. 4 (Russian), Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989 [ MR1100483 (91k:14001)]; Translation edited by A. N. Parshin and I. R. Shafarevich.
[122] Joan Porti, Torsion de Reidemeister pour les variétés hyperboliques, Mem. Amer. Math. Soc. 128 (1997), no. 612, x+139 (French, with English and French summaries). · Zbl 0881.57020 · doi:10.1090/memo/0612
[123] Józef H. Przytycki and Adam S. Sikora, Skein algebra of a group, Knot theory (Warsaw, 1995) Banach Center Publ., vol. 42, Polish Acad. Sci. Inst. Math., Warsaw, 1998, pp. 297 – 306. · Zbl 0902.57005
[124] Józef H. Przytycki and Adam S. Sikora, On skein algebras and \?\?\(_{2}\)(\?)-character varieties, Topology 39 (2000), no. 1, 115 – 148. · Zbl 0958.57011 · doi:10.1016/S0040-9383(98)00062-7
[125] Sébastien Racanière, Kirwan map and moduli space of flat connections, Math. Res. Lett. 11 (2004), no. 4, 419 – 433. · Zbl 1076.53108 · doi:10.4310/MRL.2004.v11.n4.a2
[126] Дискретные подгруппы групп Ли., Издат. ”Мир”, Мосцощ, 1977 (Руссиан). Транслатед фром тхе Енглиш бы О. В. Šварцман; Едитед бы Ѐ. Б. Винберг; Щитх а супплемент ”Аритхметициты оф ирредуцибле латтицес ин семисимпле гроупс оф ранк греатер тхан 1” бы Г. А. Маргулис.
[127] A. S. Rapinchuk, On SS-rigid groups and A. Weil’s criterion for local rigidity. I, Manuscripta Math. 97 (1998), no. 4, 529 – 543. · Zbl 0920.20004 · doi:10.1007/s002290050119
[128] A. S. Rapinchuk and V. V. Benyash-Krivets, Geometric theory of representations for fundamental groups of compact oriented surfaces, Dokl. Akad. Nauk 329 (1993), no. 2, 140 – 143 (Russian); English transl., Russian Acad. Sci. Dokl. Math. 47 (1993), no. 2, 211 – 215. · Zbl 0840.20031
[129] A. S. Rapinchuk, V. V. Benyash-Krivetz, and V. I. Chernousov, Representation varieties of the fundamental groups of compact orientable surfaces, Israel J. Math. 93 (1996), 29 – 71. · Zbl 0857.14012 · doi:10.1007/BF02761093
[130] N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), no. 1, 1 – 26. · Zbl 0768.57003
[131] R. W. Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math. 38 (1979), no. 3, 311 – 327. · Zbl 0409.17006
[132] R. W. Richardson, Conjugacy classes of \?-tuples in Lie algebras and algebraic groups, Duke Math. J. 57 (1988), no. 1, 1 – 35. · Zbl 0685.20035 · doi:10.1215/S0012-7094-88-05701-8
[133] Robert Riley, Parabolic representations of knot groups. I, Proc. London Math. Soc. (3) 24 (1972), 217 – 242. · Zbl 0229.55002 · doi:10.1112/plms/s3-24.2.217
[134] Robert Riley, Nonabelian representations of 2-bridge knot groups, Quart. J. Math. Oxford Ser. (2) 35 (1984), no. 138, 191 – 208. · Zbl 0549.57005 · doi:10.1093/qmath/35.2.191
[135] Kyoji Saito, Character variety of representations of a finitely generated group in \?\?\(_{2}\), Topology and Teichmüller spaces (Katinkulta, 1995) World Sci. Publ., River Edge, NJ, 1996, pp. 253 – 264. · Zbl 0934.20034
[136] Jean-Pierre Serre, Complète réductibilité, Astérisque 299 (2005), Exp. No. 932, viii, 195 – 217 (French, with French summary). Séminaire Bourbaki. Vol. 2003/2004. · Zbl 1156.20313
[137] I. R. Shafarevich, Basic algebraic geometry, Springer Study Edition, Springer-Verlag, Berlin-New York, 1977. Translated from the Russian by K. A. Hirsch; Revised printing of Grundlehren der mathematischen Wissenschaften, Vol. 213, 1974. · Zbl 0284.14001
[138] Peter B. Shalen, Representations of 3-manifold groups, Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 955 – 1044. · Zbl 1012.57003
[139] Adam S. Sikora, \?\?_{\?}-character varieties as spaces of graphs, Trans. Amer. Math. Soc. 353 (2001), no. 7, 2773 – 2804. · Zbl 1046.57014
[140] Adam S. Sikora, Skein theory for \?\?(\?)-quantum invariants, Algebr. Geom. Topol. 5 (2005), 865 – 897. · Zbl 1087.57008 · doi:10.2140/agt.2005.5.865
[141] A. S. Sikora, Quantizations of character varieties and quantum knot invariants, Algebr. Geom. Topol. to appear, arXiv:0807.0943
[142] A. S. Sikora, Algebraic description of character varieties, preprint.
[143] A. S. Sikora, Character varieties of abelian groups, in preparation. · Zbl 1327.14214
[144] Carlos T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 47 – 129. · Zbl 0891.14005
[145] Carlos T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. II, Inst. Hautes Études Sci. Publ. Math. 80 (1994), 5 – 79 (1995). · Zbl 0891.14006
[146] Jȩdrzej Śniatycki, Geometric quantization and quantum mechanics, Applied Mathematical Sciences, vol. 30, Springer-Verlag, New York-Berlin, 1980.
[147] E. Spanier, Singular homology and cohomology with local coefficients and duality for manifolds, Pacific J. Math. 160 (1993), no. 1, 165 – 200. · Zbl 0806.55005
[148] Juan Souto and Peter Storm, Dynamics of the mapping class group action on the variety of \?\?\?\(_{2}\)\Bbb C characters, Geom. Topol. 10 (2006), 715 – 736. · Zbl 1129.57022 · doi:10.2140/gt.2006.10.715
[149] Robert Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49 – 80.
[150] Michael Thaddeus, Conformal field theory and the cohomology of the moduli space of stable bundles, J. Differential Geom. 35 (1992), no. 1, 131 – 149. · Zbl 0772.53013
[151] Michael Thaddeus, Stable pairs, linear systems and the Verlinde formula, Invent. Math. 117 (1994), no. 2, 317 – 353. · Zbl 0882.14003 · doi:10.1007/BF01232244
[152] Michael Thaddeus, A perfect Morse function on the moduli space of flat connections, Topology 39 (2000), no. 4, 773 – 787. · Zbl 0953.58010 · doi:10.1016/S0040-9383(99)00032-4
[153] Stephan Tillmann, Character varieties of mutative 3-manifolds, Algebr. Geom. Topol. 4 (2004), 133 – 149. · Zbl 1061.57018 · doi:10.2140/agt.2004.4.133
[154] William P. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy. · Zbl 0873.57001
[155] William C. Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathematics, vol. 66, Springer-Verlag, New York-Berlin, 1979. · Zbl 0442.14017
[156] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. · Zbl 0797.18001
[157] André Weil, Remarks on the cohomology of groups, Ann. of Math. (2) 80 (1964), 149 – 157. · Zbl 0192.12802 · doi:10.2307/1970495
[158] Jonathan Weitsman, Quantization via real polarization of the moduli space of flat connections and Chern-Simons gauge theory in genus one, Comm. Math. Phys. 137 (1991), no. 1, 175 – 190. · Zbl 0717.53065
[159] Jonathan Weitsman, Real polarization of the moduli space of flat connections on a Riemann surface, Comm. Math. Phys. 145 (1992), no. 3, 425 – 433. · Zbl 0765.53021
[160] Jonathan Weitsman, Geometry of the intersection ring of the moduli space of flat connections and the conjectures of Newstead and Witten, Topology 37 (1998), no. 1, 115 – 132. · Zbl 0919.14018 · doi:10.1016/S0040-9383(96)00036-5
[161] R. A. Wentworth, The action of the mapping class group on representation varieties, preprint. · Zbl 1273.30036
[162] Edward Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), no. 3, 351 – 399. · Zbl 0667.57005
[163] Edward Witten, On quantum gauge theories in two dimensions, Comm. Math. Phys. 141 (1991), no. 1, 153 – 209. · Zbl 0762.53063
[164] Edward Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992), no. 4, 303 – 368. · Zbl 0768.53042 · doi:10.1016/0393-0440(92)90034-X
[165] Alice Whittemore, On special linear characters of free groups of rank \?\ge 4, Proc. Amer. Math. Soc. 40 (1973), 383 – 388. · Zbl 0248.20031
[166] Anna Wienhard, The action of the mapping class group on maximal representations, Geom. Dedicata 120 (2006), 179 – 191. · Zbl 1175.32007 · doi:10.1007/s10711-006-9079-7
[167] Scott A. Wolpert, The Weil-Petersson metric geometry, Handbook of Teichmüller theory. Vol. II, IRMA Lect. Math. Theor. Phys., vol. 13, Eur. Math. Soc., Zürich, 2009, pp. 47 – 64. · Zbl 1169.30020 · doi:10.4171/055-1/2
[168] N. M. J. Woodhouse, Geometric quantization, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1992. Oxford Science Publications. · Zbl 0747.58004
[169] Don Zagier, On the cohomology of moduli spaces of rank two vector bundles over curves, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 533 – 563. · Zbl 0845.14016 · doi:10.1007/978-1-4612-4264-2_20
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.