×

Diophantine approximation and parametric geometry of numbers. (English) Zbl 1264.11056

Dirichlet’s Theorem says that for \(n>1\), real numbers \(\xi_1,\dots,\xi_{n-1}\) and \(Q\geq 1\), there is a nonzero point \(\mathbf y=(y, y_1,\dots,y_{n-1})\in\mathbb Z^n\) having \(|y|\leq Q, |\xi_i y-y_i|\leq Q^{-1(n-1)}\) for \(i=1,\dots, n-1\). On the other hand let \(\Lambda\subset \mathbb R^n\) be a lattice and \(\mathcal K\) a closed symmetric convex body in \(\mathbb R^n\) with \(vol(\mathcal K)\geq 2^n \det \Lambda\). From Minkowski, \(\mathcal K\) contains a nonzero lattice point. Now, let \(\Lambda :=\Lambda(\xi)=\Lambda(\xi_1,\dots,\xi_{n-1})\) be the lattice of points \((y,\xi_1 y-y_1,\dots,\xi_{n-1} y-y_{n-1})\) where \(\mathbf y=(y,y_1,\dots,y_{n-1})\) runs through \(\mathbb Z^n\). Let \(\mathcal K(Q)\) consists of points \((x_1,x_2,\dots,x_n)\in\mathbb R^n\) with \(|x_1|\leq Q, |x_i|\leq Q^{-1/(n-1)}\) for \(i=2,\dots,n\). Then \(\det(\Lambda)=1\), \(vol(\mathcal K(Q))=2^n\) so that \(\mathcal K(Q)\) contains a nonzero point. Let us define \(q\) by \(Q=e^{(n-1)q}\). Then \(|x_1|\leq e^{(n-1)q}, |x_i|\leq e^{-q}\) for \(i=2,\dots,n\). Let us consider the convex body \(\mathcal K(q)=T^q(\mathcal K)\) parametrized by \(q\) where \(\mathcal K\) is a given symmetric convex body and \(T: \mathbb R^n\to \mathbb R^n\) is the map with \(T(x_1,x_2,\dots,x_n)=(e^{-(n-1)}x_1, e^{-1} x_2,\dots, e^{-1} x_n)\).
Let \(\lambda_i(q)=\lambda_i(\Lambda,\mathcal K(q))=\lambda_i(\Lambda, \mathcal K,q)\) be the Minkowki successive minima of the convex body \(\mathcal K(q)\) seen as functions of \(q\), \(L_i=\log \lambda_i (q)\) and \(\phi_i(q)=L_i(q)/q, \;\overline{\phi_i}= \lim\sup _{q\to\infty} \phi_i(q)\) and \(\underline{\phi_i}= \lim\inf _{q\to\infty} \phi_i(q)\). A lattice \(\Lambda\) will be called proper if for every \(j,\;1\leq j\leq n,\) there are arbitrarily large values of \(q\) with \(L_j(q)=L_{j+1}(q)\). Observe that, from [W. M. Schmidt and L. Summerer, Acta Arith. 140, No. 1, 67–91 (2009; Zbl 1236.11060)], \(\Lambda( \xi_1,\dots,\xi_{n-1})\) is proper if \(1,\xi_1,\dots,\xi_{n-1}\) are linearly independent over \(\mathbb Q\).
The authors prove the following results in parametric Geometry of Numbers:
-
Suppose that \(n>2\) and \(\Lambda\) is proper. Then \((n-1)\underline{\phi}_1+\overline{\phi}_n\leq -\underline{\phi}_n(\frac{n}{n-2}+\underline{\phi}_1+ \frac{2}{n-2}\overline{\phi}_n)\). Moreover for \(1\leq i <n,\) we have \((n-1)\underline{\phi}_i+\overline{\phi}_n\leq \overline{\phi}_i(n-\underline{\phi}_i+\overline{\phi}_n)\).
-
Suppose that \(n>2\) and \(\Lambda\) is proper. Then \((n-1)\overline{\phi}_n+\underline{\phi}_1\geq -\overline{\phi}_1(\frac{n}{n-2}+\overline{\phi}_n+\frac{2}{n-2}\underline{\phi}_1)\). Moreover for \(1\leq j \leq n,\) we have \((n-1)\overline{\phi}_j+\underline{\phi}_1\geq \underline{\phi}_j(n-\overline{\phi}_j+\underline{\phi}_1)\).
-
Suppose that \(\Lambda\) is proper. Then we have \[ \underline\phi_1\leq\frac{(n^2-3n+3)\overline\phi_1+(n-3)\overline\phi_1^2}{(n-2)^2+(2n-5)\overline\phi_1+\overline\phi_1^2}\text{ and } \overline\phi_n\geq\frac{(n^2-3n+3)\underline\phi_n+(n-3)\underline\phi_n^2}{(n-2)^2+(2n-5)\underline\phi_n+\underline\phi_n^2}. \]
Observe that the last majoration of \(\underline \phi_1\) sharpens an inequality of V. Jarník [Czech. Math. J. 4(79), 330–353 (1954; Zbl 0057.28303)] in terms of the classical approximation constants \(\omega\) and \(\hat\omega\).
The proofs of these inequalities are difficult. They are obtained from the important theorem 4.1 of the article. In particular, the author defines some functions \(P_1, P_2,\dots,P_n\) easier to deal with than \(L_1, L_2,\dots,L_n\) involving the \(i\)th compound \(\Lambda^{(i)}\) of \(\Lambda\) defined from some exterior products, some pseudo-compounds \(\mathcal K(q)^{(i)}\) of \(\mathcal K(q)\) see [K. Mahler, Proc. Lond. Math. Soc., III. Ser. 5, 358–379, 380–384 (1955; Zbl 0065.28002)], the successive minima \(\mu_{i1},\dots, \mu_{i N_i}\) with respect to \(\Lambda^{(i)},\mathcal K(q)^{(i)}\) and \(M_{ik}=\log \mu_{i ,k}\) and the so-called \((n,\gamma)\)-systems defined from \(\mathcal P=(P_1,\dots,P_n)\).

MSC:

11H06 Lattices and convex bodies (number-theoretic aspects)
11J13 Simultaneous homogeneous approximation, linear forms
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bugeaud Y., Laurent M.: On exponents of homogeneous and inhomogeneous Diophantine approximation. Mosc. Math. J. 5(4), 747–766 (2005) · Zbl 1119.11039
[2] Bugeaud, Y., Laurent, M.: Exponents of Diophantine Approximation. Diophantine Geometry. CRM Series 4, pp. 101–121. Ed. Normale, Pisa (2007) · Zbl 1229.11098
[3] Bugeaud Y., Laurent M.: On transfer inequalities in diophantine approximation II. Math. Z. 265(2), 249–262 (2010) · Zbl 1234.11086 · doi:10.1007/s00209-009-0512-0
[4] Jarník V.: Zum Khintchineschen Übertragungssatz. Trav. Inst. Math. Tbilissi 3, 193–212 (1938) · Zbl 0019.10602
[5] Jarník V.: On the theory of homogeneous linear diophantine approximations. Czech Math. J. 4(79), 330–353 (1954) · Zbl 0057.28303
[6] Khintchine A.Y.: Zur metrischen Theorie der Diophantischen Approximationen. Math. Z. 24, 706–714 (1926) · JFM 52.0183.02 · doi:10.1007/BF01216806
[7] Khintchine, A.Y.: Über eine Klasse linearer Diophantischer Approximationen. Rend. Circ. Math. Palermo 50, 170–195 · JFM 52.0183.01
[8] Laurent M.: Exponents of Diophantine approximation in dimension two. Can. J. Math. 61(1), 165–189 (2009) · Zbl 1229.11101 · doi:10.4153/CJM-2009-008-2
[9] Mahler K.: On compound convex bodies I, II. Proc. Lond. Math. Soc. 5(3), 358–384 (1955) · Zbl 0065.28002 · doi:10.1112/plms/s3-5.3.358
[10] Minkowski H.: Geometrie der Zahlen. Teubner Verlag, Leipzig (1910) · JFM 41.0948.05
[11] Moshchevitin N.G.: Khintchines singular diophantine systems and their applications. Russian Math. Surveys 65(3), 433–511 (2010) · Zbl 1225.11094 · doi:10.1070/RM2010v065n03ABEH004680
[12] Moshchevitin, N.G.: Proof of W.M. Schmidt’s conjecture concerning successive minima of a lattice. Preprint. arXiv:0804.0120 · Zbl 1350.11073
[13] Moshchevitin, N.G.: Exponents for three-dimensional simultaneous Diophantine approximations. Preprint. arXiv:1009.0987 · Zbl 1249.11061
[14] Roy D.: On two exponents of approximation related to a number and its square. Can. J. Math. 59(1), 211–224 (2007) · Zbl 1115.11036 · doi:10.4153/CJM-2007-009-3
[15] Schmidt W.M., Summerer L.: Parametric geometry of numbers and applications. Acta Arithmetica 140(1), 67–91 (2009) · Zbl 1236.11060 · doi:10.4064/aa140-1-5
[16] Schmidt, W.M.: Open problems in Diophantine approximation. Diophantine Approximations and Transcendental Numbers (Luminy, 1982). Progr. Math., vol. 31, pp. 271–287. Birkhäuser, Boston (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.