×

Minoration de la résolvante dans le cas captif. (Lower bound on the resolvent for trapped situations.) (French) Zbl 1206.35182

Summary: We prove an optimal universal lower bound on the truncated resolvent for semiclassical Schrödinger operators near a trapping energy. In particular, this shows that known upper bounds for hyperbolic trapping are optimal. The proof rely on an idea of X. P. Wang, and on propagation of coherent states for Ehrenfest times.

MSC:

35P15 Estimates of eigenvalues in context of PDEs
35J10 Schrödinger operator, Schrödinger equation
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alexandrova, I.; Bony, J.-F.; Ramond, T., Semiclassical scattering amplitude at the maximum of the potential, Asymptot. Anal., 58, 1-2, 57-125 (2008) · Zbl 1163.35004
[2] Bouzouina, A.; Robert, D., Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. J., 111, 2, 223-252 (2002) · Zbl 1069.35061
[3] Burq, N., Lower bounds for shape resonances widths of long range Schrödinger operators, Amer. J. Math., 124, 4, 677-735 (2002) · Zbl 1013.35019
[4] Burq, N., Semi-classical estimates for the resolvent in nontrapping geometries, Int. Math. Res. Not. (5), 221-241 (2002) · Zbl 1161.81368
[5] Burq, N., Smoothing effect for Schrödinger boundary value problems, Duke Math. J., 123, 2, 403-427 (2004) · Zbl 1061.35024
[6] Cardoso, F.; Vodev, G., Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds. II, Ann. Henri Poincaré, 3, 4, 673-691 (2002) · Zbl 1021.58016
[7] Castella, F.; Jecko, T., Besov estimates in the high-frequency Helmholtz equation, for a non-trapping and \(C^2\) potential, J. Differential Equations, 228, 2, 440-485 (2006) · Zbl 1105.35091
[8] Christianson, H., Semiclassical non-concentration near hyperbolic orbits, J. Funct. Anal., 246, 2, 145-195 (2007) · Zbl 1119.58018
[9] Dimassi, M.; Sjöstrand, J., Spectral Asymptotics in the Semi-Classical Limit, London Mathematical Society Lecture Note Series, vol. 268 (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0926.35002
[10] Gérard, C.; Martinez, A., Principe d’absorption limite pour des opérateurs de Schrödinger à longue portée, C. R. Acad. Sci. Paris, Ser. I, 306, 3, 121-123 (1988) · Zbl 0672.35013
[11] Ikawa, M., Decay of solutions of the wave equation in the exterior of several convex bodies, Ann. Inst. Fourier, 38, 2, 113-146 (1988) · Zbl 0636.35045
[12] Nakamura, S., Scattering theory for the shape resonance model. I. Nonresonant energies, Ann. Inst. H. Poincaré Phys. Théor., 50, 2, 115-131 (1989) · Zbl 0686.35090
[13] Nonnenmacher, S.; Zworski, M., Quantum decay rates in chaotic scattering, Acta Math., 203, 2, 149-233 (2009) · Zbl 1226.35061
[14] Reed, M.; Simon, B., Analysis of Operators, Methods of Modern Mathematical Physics, vol. IV (1978), Academic Press: Academic Press New York
[15] Robert, D.; Tamura, H., Semiclassical estimates for resolvents and asymptotics for total scattering cross-sections, Ann. Inst. H. Poincaré Phys. Théor., 46, 4, 415-442 (1987) · Zbl 0648.35066
[16] Wang, X. P., Time-decay of scattering solutions and classical trajectories, Ann. Inst. H. Poincaré Phys. Théor., 47, 1, 25-37 (1987) · Zbl 0641.35018
[17] Wang, X. P., Semiclassical resolvent estimates for \(N\)-body Schrödinger operators, J. Funct. Anal., 97, 2, 466-483 (1991) · Zbl 0739.35047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.