×

Well-posedness for the Kadomtsev-Petviashvili II equation and generalisations. (English) Zbl 1157.35094

Summary: We show the local in time well-posedness of the Cauchy problem for the Kadomtsev-Petviashvili II equation for initial data in the non-isotropic Sobolev space \(H^{s_1,s_2}(\mathbb{R}^2)\) with \(s_1>-\tfrac 12\) and \(s_2 \geq 0\). On the \(H^{s_1,0}(\mathbb{R}^2)\) scale this result includes the full subcritical range without any additional low frequency assumption on the initial data. More generally, we prove the local in time well-posedness of the Cauchy problem for the following generalisation of the KP II equation: \[ (u_t-|D_x|^\alpha u_x+ (u^2)_x)_x+u_{yy}=0,\quad u(0)=u_0, \] for \(\tfrac 43<\alpha\leq 6\), \(s_1>\max(1-\tfrac 34\alpha,\tfrac 14-\tfrac 38 \alpha)\) \(s_2\geq 0\) and \(u_0\in H^{s_1,s_2} (\mathbb{R}^2)\). We deduce global well-posedness for \(s_1\geq 0\), \(s_2=0\) and real valued initial data.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107 – 156. , https://doi.org/10.1007/BF01896020 J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal. 3 (1993), no. 3, 209 – 262. · Zbl 0787.35098 · doi:10.1007/BF01895688
[2] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107 – 156. , https://doi.org/10.1007/BF01896020 J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal. 3 (1993), no. 3, 209 – 262. · Zbl 0787.35098 · doi:10.1007/BF01895688
[3] J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation, Geom. Funct. Anal. 3 (1993), no. 4, 315 – 341. · Zbl 0787.35086 · doi:10.1007/BF01896259
[4] Jean Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d’espace (d’après Bourgain), Astérisque 237 (1996), Exp. No. 796, 4, 163 – 187 (French, with French summary). Séminaire Bourbaki, Vol. 1994/95.
[5] Rafael José Iório Jr. and Wagner Vieira Leite Nunes, On equations of KP-type, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 4, 725 – 743. · Zbl 0911.35103 · doi:10.1017/S0308210500021740
[6] Pedro Isaza and Jorge Mejía, Local and global Cauchy problems for the Kadomtsev-Petviashvili (KP-II) equation in Sobolev spaces of negative indices, Comm. Partial Differential Equations 26 (2001), no. 5-6, 1027 – 1054. · Zbl 0993.35080 · doi:10.1081/PDE-100002387
[7] Pedro Isaza, Juan López, and Jorge Mejía, Cauchy problem for the fifth order Kadomtsev-Petviashvili (KPII) equation, Commun. Pure Appl. Anal. 5 (2006), no. 4, 887 – 905. · Zbl 1142.35079 · doi:10.3934/cpaa.2006.5.887
[8] B.B. Kadomtsev and V.I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Sov. Phys., Dokl. 15 (1970), 539-541 (English. Russian original). · Zbl 0217.25004
[9] Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), no. 1, 33 – 69. · Zbl 0738.35022 · doi:10.1512/iumj.1991.40.40003
[10] C. E. Kenig and S. N. Ziesler, Local well posedness for modified Kadomstev-Petviashvili equations, Differential Integral Equations 18 (2005), no. 10, 1111 – 1146. · Zbl 1212.35419
[11] L. Molinet, J. C. Saut, and N. Tzvetkov, Remarks on the mass constraint for KP type equations, preprint, arXiv:math.AP/0603303, 2006. · Zbl 1139.35009
[12] Jean-Claude Saut, Remarks on the generalized Kadomtsev-Petviashvili equations, Indiana Univ. Math. J. 42 (1993), no. 3, 1011 – 1026. · Zbl 0814.35119 · doi:10.1512/iumj.1993.42.42047
[13] J. C. Saut and N. Tzvetkov, The Cauchy problem for higher-order KP equations, J. Differential Equations 153 (1999), no. 1, 196 – 222. · Zbl 0927.35098 · doi:10.1006/jdeq.1998.3534
[14] J. C. Saut and N. Tzvetkov, The Cauchy problem for the fifth order KP equations, J. Math. Pures Appl. (9) 79 (2000), no. 4, 307 – 338 (English, with English and French summaries). · Zbl 0961.35137 · doi:10.1016/S0021-7824(00)00156-2
[15] Hideo Takaoka, Global well-posedness for the Kadomtsev-Petviashvili II equation, Discrete Contin. Dynam. Systems 6 (2000), no. 2, 483 – 499. · Zbl 1021.35099 · doi:10.3934/dcds.2000.6.483
[16] Hideo Takaoka, Well-posedness for the Kadomtsev-Petviashvili II equation, Adv. Differential Equations 5 (2000), no. 10-12, 1421 – 1443. · Zbl 0994.35108
[17] H. Takaoka and N. Tzvetkov, On the local regularity of the Kadomtsev-Petviashvili-II equation, Internat. Math. Res. Notices 2 (2001), 77 – 114. · Zbl 0977.35126 · doi:10.1155/S1073792801000058
[18] Nickolay Tzvetkov, On the Cauchy problem for Kadomtsev-Petviashvili equation, Comm. Partial Differential Equations 24 (1999), no. 7-8, 1367 – 1397. · Zbl 0934.35161 · doi:10.1080/03605309908821468
[19] N. Tzvetkov, Global low-regularity solutions for Kadomtsev-Petviashvili equation, Differential Integral Equations 13 (2000), no. 10-12, 1289 – 1320. · Zbl 0977.35125
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.