×

Effective Borel-resummation by factorial series. (Sommation effective d’une somme de Borel par séries de factorielles.) (French. English summary) Zbl 1129.30023

In der Theorie der Borelschen Summation läuft die Summation einer Potenzreihe \(\varphi(z)=\sum^\infty_{n=0}a_nz^n\) darauf hinaus statt \(\varphi\) die Reihe \(f(s)=\sum^\infty_{n=0}\frac{a_n} {s^{n+1}}\) zu betrachten und diese als Laplace-Transformierte von \(F (t)=\sum^\infty_{n=0}a_n\frac{t^n}{n!}\) aufzufassen. Unter gewissen Konvergenzbedingungen ergibt sich dann die Integraldarstellung \(f(s)= \frac 1s\int^\infty_0e^{-x}F(\frac xs)\,dx\). Hieraus folgt durch eine Variablensubstitution in einem bestimmten Bereich der komplexen Zahlenebene die Repräsentation von \(f\) durch eine Fakultätenreihe der Form \(f(s)=a_0+ \sum^\infty_{n=0}\frac{n!b_n}{s(s+1)\dots (s+n)}=h(s)\).
Die Autoren geben in Abhängigkeit von \(N\) und vom Konvergenzbereich konkrete Abschätzungen für das Restglied \(R_N\) der Faktultätenreihe \(h(s)\) an, wenn \(h(s)\) nur bis zur Stelle \(n=N\) betrachtet wird. Die ganzen Abhandlungen werden erweitert auf die Borelsche Summation von Potenzreihen mit gebrochenen Exponenten, ferner werden spezielle Beispiele angegeben.

MSC:

30E15 Asymptotic representations in the complex plane
40G99 Special methods of summability
34M30 Asymptotics and summation methods for ordinary differential equations in the complex domain
40G10 Abel, Borel and power series methods
PDFBibTeX XMLCite
Full Text: DOI arXiv Numdam EuDML

References:

[1] Balser, W.; Lutz, D. A.; Schäfke, R., On the convergence of Borel approximants, J. Dynam. Control Systems, 8, 1, 65-92 (2002) · Zbl 1029.34074 · doi:10.1023/A:1013952717344
[2] Berry, M. V.; Howls, C. J., Hyperasymptotics for integrals with saddles, Proc. Roy. Soc. London Ser. A, 434, 1892, 657-675 (1991) · Zbl 0764.30031 · doi:10.1098/rspa.1991.0119
[3] Canalis-Durand, M., Solutions Gevrey d’équations différentielles singulièrement perturbées (1999)
[4] Candelpergher, B.; Nosmas, J.-C.; Pham, F., Approche de la résurgence (1993) · Zbl 0791.32001
[5] Comtet, Louis, Advanced combinatorics (1974) · Zbl 0283.05001
[6] Delabaere, E., Effective resummation methods for an implicit resurgent function (2006)
[7] Delabaere, E.; Howls, C. J., Global asymptotics for multiple integrals with boundaries, Duke Math. J., 112, 2, 199-264 (2002) · Zbl 1060.30049 · doi:10.1215/S0012-9074-02-11221-6
[8] Delabaere, E.; Rasoamanana, J.-M., Resurgent deformations for an ODE of order 2, Pacific Journal of Mathematics, 223, 1, 35-93 (2006) · Zbl 1116.34068 · doi:10.2140/pjm.2006.223.35
[9] Delabaere, Eric, Computer algebra and differential equations (1992), 193, 59-101 (1994) · Zbl 0805.40007
[10] Delabaere, Eric; Pham, Frédéric, Resurgent methods in semi-classical asymptotics, Ann. Inst. H. Poincaré Phys. Théor., 71, 1, 1-94 (1999) · Zbl 0977.34053
[11] Dingle, R. B., Asymptotic expansions : their derivation and interpretation (1973) · Zbl 0279.41030
[12] Écalle, Jean, Les fonctions résurgentes. Tome I, 5 (1981) · Zbl 0499.30034
[13] Écalle, Jean, Les fonctions résurgentes. Tome II, 6 (1981) · Zbl 0499.30035
[14] Écalle, Jean, Les fonctions résurgentes. Tome III, 85 (1985) · Zbl 0602.30029
[15] Feller, William, An introduction to probability theory and its applications. Vol. I (1968) · Zbl 0077.12201
[16] Jentschura, U., Quantum Electrodynamic, Bound-State Calculations and Large-Order Perturbation Theory (2004)
[17] Malgrange, Bernard, Sommation des séries divergentes, Exposition. Math., 13, 2-3, 163-222 (1995) · Zbl 0836.40004
[18] Nevanlinna, F., Zur Theorie der Asymptotischen Potenzreihen (1918) · JFM 46.1463.01
[19] Nörlund, N. E., Leçons sur les Séries d’Interpolation (1926) · JFM 52.0301.04
[20] Olde Daalhuis, A. B., Hyperterminants. I, J. Comput. Appl. Math., 76, 1-2, 255-264 (1996) · Zbl 0866.65011 · doi:10.1016/S0377-0427(96)00108-2
[21] Olde Daalhuis, A. B., Hyperasymptotic solutions of higher order linear differential equations with a singularity of rank one, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454, 1968, 1-29 (1998) · Zbl 0919.34012 · doi:10.1098/rspa.1998.0145
[22] Olde Daalhuis, A. B., Hyperterminants. II, J. Comput. Appl. Math., 89, 1, 87-95 (1998) · Zbl 0910.34014 · doi:10.1016/S0377-0427(97)00220-3
[23] Poincaré, H., Les méthodes nouvelles de la mécanique céleste. Tome I (1987) · Zbl 0651.70002
[24] Ramis, Jean-Pierre; Schäfke, Reinhard, Gevrey separation of fast and slow variables, Nonlinearity, 9, 2, 353-384 (1996) · Zbl 0925.70161 · doi:10.1088/0951-7715/9/2/004
[25] Simon, B., Large orders and summability of eigenvalue perturbation theory : a mathematical overview., International Journal of Quantum Chemistry, XXI, 3-25 (1982) · doi:10.1002/qua.560210103
[26] Stokes, G. G., On the Discontinuity of arbitrary constants which appear in divergent developments, Transactions of the Cambridge Philosophical Society, X (1857) · JFM 02.0163.03
[27] Thomann, Jean, Resommation des series formelles. Solutions d’équations différentielles linéaires ordinaires du second ordre dans le champ complexe au voisinage de singularités irrégulières, Numer. Math., 58, 5, 503-535 (1990) · Zbl 0715.30001 · doi:10.1007/BF01385638
[28] Wasow, Wolfgang, Asymptotic expansions for ordinary differential equations (1965) · Zbl 0133.35301
[29] Watson, G. N., The transformation of an asymptotic series into a convergent series of inverse factorials, Cir. Mat. Palermo, 34, 41-88 (1912) · JFM 43.0314.02 · doi:10.1007/BF03015008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.