×

Multi-resolution analysis of Wiener-type uncertainty propagation schemes. (English) Zbl 1056.65006

Summary: A multi-resolution analysis (MRA) is applied to an uncertainty propagation scheme based on a generalized polynomial chaos (PC) representation. The MRA relies on an orthogonal projection of uncertain data and solution variables onto a multi-wavelet basis, consisting of compact piecewise-smooth polynomial functions. The coefficients of the expansion are computed through a Galerkin procedure. The MRA scheme is applied to the simulation of the Lorenz system having a single random parameter. The convergence of the solution with respect to the resolution level and expansion order is investigated. In particular, results are compared to two Monte-Carlo sampling strategies, demonstrating the superiority of the MRA.
For more complex problems, however, the MRA approach may require excessive CPU times. Adaptive methods are consequently developed in order to overcome this drawback. Two approaches are explored: the first is based on adaptive refinement of the multi-wavelet basis, while the second is based on adaptive block-partitioning of the space of random variables. Computational tests indicate that the latter approach is better suited for large problems, leading to a more efficient, flexible and parallelizable scheme.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
65T60 Numerical methods for wavelets
65C05 Monte Carlo methods
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions (1970), Dover · Zbl 0515.33001
[2] Alpert, B.; Beylkin, G.; Gines, D.; Vozovoi, L., Adaptive solution of partial differential equations in multiwavelet bases, J. Comput. Phys., 182, 149-190 (2002) · Zbl 1015.65046
[3] Alpert, B. K., A class of bases in \(L_2\) for the sparse representation of integral operators, SIAM J. Math. Anal., 24, 246-262 (1993) · Zbl 0764.42017
[4] I. Babuska, R. Tempone, G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic differential equations, Report 02-38, TICAM, 2002; I. Babuska, R. Tempone, G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic differential equations, Report 02-38, TICAM, 2002 · Zbl 1080.65003
[5] Cameron, R. H.; Martin, W. T., The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals, Ann. Math., 48, 385-392 (1947) · Zbl 0029.14302
[6] Chorin, A. J., Hermite expansions in Monte Carlo computation, J. Comput. Phys., 8, 472-482 (1971) · Zbl 0229.65025
[7] Chorin, A. J., Gaussian fields and random flow, J. Fluid Mech., 63, 21-32 (1974) · Zbl 0285.76022
[8] Daubechies, I., Ten Lectures on Wavelets (1992), SIAM · Zbl 0776.42018
[9] Deb, M. K.; Babuska, I. M.; Oden, J. T., Solution of stochastic partial differential equations using Galerkin finite element techniques, Comput. Methods Appl. Mech. Engrg., 190, 6359-6372 (2001) · Zbl 1075.65006
[10] Debusschere, B.; Najm, H. N.; Matta, A.; Knio, O. M.; Ghanem, R. G.; Le Maı̂tre, O. P., Protein labeling reactions in electrochemical microchannel flow: Numerical prediction and uncertainty propagation, Phys. Fluids, 15, 8, 2238-2250 (2003) · Zbl 1186.76133
[11] Ghanem, R., Ingredients for a general purpose stochastic finite elements formulation, Comput. Methods Appl. Mech. Engrg., 168, 19-34 (1999) · Zbl 0943.65008
[12] Ghanem, R.; Dham, S., Stochastic finite element analysis for multiphase flow in heterogeneous porous media, Transp. Porous Media, 32, 239-262 (1998)
[13] Ghanem, R. G., Probabilistic characterization of transport in heterogeneous media, Comput. Methods Appl. Mech. Engrg., 158, 199-220 (1998) · Zbl 0954.76079
[14] Ghanem, R. G.; Spanos, P. D., Stochastic Finite Elements: A Spectral Approach (1991), Springer · Zbl 0953.74608
[15] Grigoriu, M., Stochastic Calculus, Applications in Sciences and Engineering (2002), Birkhäuser · Zbl 1015.60001
[16] Hien, T. D.; Kleiber, M., Stochastic finite element modeling in linear transient heat transfer, Comput. Methods Appl. Mech. Engrg., 144, 111-124 (1997) · Zbl 0890.73066
[17] O.M. Knio, R.G. Ghanem, Polynomial Chaos product and moment formulas: A user utility. Technical report, The Johns Hopkins University, Baltimore, MD, 2001 (unpublished); O.M. Knio, R.G. Ghanem, Polynomial Chaos product and moment formulas: A user utility. Technical report, The Johns Hopkins University, Baltimore, MD, 2001 (unpublished)
[18] Le Maı̂tre, O. P.; Knio, O. M.; Najm, H. N.; Ghanem, R. G., A stochastic projection method for fluid flow. i. basic formulation, J. Comput. Phys., 173, 481-511 (2001) · Zbl 1051.76056
[19] O.P. Le Maı̂tre, H.N. Najm, R.G. Ghanem, O.M. Knio, Uncertainty propagation using Wiener-Haar expansions, J. Comput. Phys. (2004) (in press), doi:10.1016/j.jcp.2003.11.033; O.P. Le Maı̂tre, H.N. Najm, R.G. Ghanem, O.M. Knio, Uncertainty propagation using Wiener-Haar expansions, J. Comput. Phys. (2004) (in press), doi:10.1016/j.jcp.2003.11.033 · Zbl 1052.65114
[20] Le Maı̂tre, O. P.; Reagan, M. T.; Najm, H. N.; Ghanem, R. G.; Knio, O. M., A stochastic projection method for fluid flow. ii. random process, J. Comput. Phys., 181, 9-44 (2002) · Zbl 1052.76057
[21] Liu, J. S., Monte Carlo Strategies in Scientific Computing (2001), Springer · Zbl 0991.65001
[22] Makeev, A.; Maroudas, D.; Kevrekidis, I., Coarse stability and bifurcation analysis using stochastic simulators: Kinetic Monte Carlo examples, J. Chem. Phys., 116, 10083-10091 (2002)
[23] Matthies, H. G.; Brenner, C. E.; Bucher, C. G.; Soares, C. G., Uncertainties in probabilistic numerical analysis of structures and solids – stochastic finite-elements, Struct. Safety, 19, 3, 283-336 (1997)
[24] McKay, M.; Beckman, R.; Conover, W., A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21, 2, 239-245 (1979) · Zbl 0415.62011
[25] Ogden, R. T., Essentials Wavelets for Statistical Applications and Data Analysis (1997), Birkhäuser
[26] Reagan, M. T.; Najm, H. N.; Ghanem, R. G.; Knio, O. M., Uncertainty quantification in reacting flow simulations through non-intrusive spectral projection, Combust. Flame, 132, 545-555 (2003)
[27] Strang, G., Introduction to Applied Mathematics (1986), Wellesley-Cambridge Press · Zbl 0618.00015
[28] Walnut, D. F., An Introduction to Wavelets Analysis. Applied and Numerical Harmonic Analysis (2002), Birkhäuser
[29] Walter, G. G., Wavelets and Other Orthogonal Systems with Applications (1994), CRC Press · Zbl 0866.42022
[30] Wiener, S., The homogeneous chaos, Am. J. Math., 60, 897-936 (1938) · Zbl 0019.35406
[31] Xiu, D.; Karniadakis, G. E., Modeling uncertainty in steady state diffusion problems via generalized Polynomial Chaos, Comput. Methods Appl. Mech. Engrg., 191, 4927-4948 (2002) · Zbl 1016.65001
[32] Xiu, D. B.; Karniadakis, G. E., The Wiener-Askey Polynomial Chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 619-644 (2002) · Zbl 1014.65004
[33] Xiu, D. B.; Karniadakis, G. E., Modeling uncertainty in flow simulations via generalized Polynomial Chaos, J. Comput. Phys., 187, 137-167 (2003) · Zbl 1047.76111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.