×

A \(C^ *\)-algebraic framework for quantum groups. (English) Zbl 1053.46050

This paper begins with a very readable overview of what a locally compact quantum group should be. While we know what a compact quantum group is, beyond saying that locally compact quantum groups are generalizations of locally compact groups, the noncompact case is still troublesome, and the authors explain why. They then introduce an axiom system, noting that it is not completely satisfactory, principally due to their having to introduce the Haar weight axiomatically. Their system is based on the notion of a weighted Hopf \(C^*\)-algebra. The ingredients of this central concept are a \(C^*\)-algebra \(A\) and a coproduct \(\delta\) forming a \(C^*\)-bialgebra (\(\delta\) is a homomorphism from \(A\) into the multiplier algebra of the minimal tensor product \(A\otimes A\)), a Haar weight \(h\) and an antipode \(\kappa=R\circ \tau_{i/2}\): \(R\) is an involutive anti-automorphism and \(\tau(\mathbb{R})\) is the scaling group of automorphisms of \(A\). The authors analyse the properties of weighted Hopf \(C^*\)-algebras in detail. The results, such as the uniqueness of the Haar weight and antipode, and duality, lends support to this set of axioms as a good working system. Moreover, the paper is well written and has useful supporting appendices.

MSC:

46L89 Other “noncommutative” mathematics based on \(C^*\)-algebra theory
46L65 Quantizations, deformations for selfadjoint operator algebras
20G42 Quantum groups (quantized function algebras) and their representations
22D35 Duality theorems for locally compact groups
17B37 Quantum groups (quantized enveloping algebras) and related deformations
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
46-02 Research exposition (monographs, survey articles) pertaining to functional analysis
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Baaj S., Ann. Sci. Ec. Norm. Sup., 4e série 26 pp 425–
[2] Boas R. P., Entire Functions (1954) · Zbl 0058.30201
[3] DOI: 10.1016/0022-1236(80)90002-6 · Zbl 0443.46042 · doi:10.1016/0022-1236(80)90002-6
[4] Dixmier J., Les Algèbres D’opérateur Dans L’espace Hilbertien (1957)
[5] Doran R. S., Lecture Notes in Mathematics 768, in: Approximate Identities and Factorization in Banach Modules (1979) · Zbl 0418.46039 · doi:10.1007/BFb0098610
[6] DOI: 10.1007/978-3-662-02813-1 · doi:10.1007/978-3-662-02813-1
[7] Enock M., Proc. London Math. Soc. 66 pp 619–
[8] DOI: 10.1016/0022-1236(75)90060-9 · Zbl 0304.46043 · doi:10.1016/0022-1236(75)90060-9
[9] DOI: 10.1007/BF02101457 · Zbl 0833.17020 · doi:10.1007/BF02101457
[10] DOI: 10.1142/S0129167X97000469 · Zbl 0926.17014 · doi:10.1142/S0129167X97000469
[11] Kustermans J., Int. J. Math. 12 pp 289–
[12] DOI: 10.1016/S0764-4442(99)80288-2 · Zbl 0957.46037 · doi:10.1016/S0764-4442(99)80288-2
[13] Kustermans J., Ann. Sci. Ec. Norm. Sup. 33 pp 837– · Zbl 1034.46508 · doi:10.1016/S0012-9593(00)01055-7
[14] DOI: 10.2977/prims/1195165585 · Zbl 0839.46055 · doi:10.2977/prims/1195165585
[15] DOI: 10.1142/S0129167X96000293 · Zbl 0876.46043 · doi:10.1142/S0129167X96000293
[16] DOI: 10.1007/BF02392262 · Zbl 0262.46063 · doi:10.1007/BF02392262
[17] DOI: 10.1007/BF02473358 · Zbl 0703.22018 · doi:10.1007/BF02473358
[18] Stratilla S., Modular Theory in Operator Algebras (1981)
[19] Takesaki M., Lecture Notes in Mathematics 128, in: Tomita’s Theory of Modular Hilbert Algebras and its Applications (1970) · Zbl 0193.42502 · doi:10.1007/BFb0065832
[20] DOI: 10.1090/S0002-9939-1959-0108732-6 · doi:10.1090/S0002-9939-1959-0108732-6
[21] Vallin J. M., Proc. London Math. Soc. 50 pp 131–
[22] DOI: 10.1007/BF01645776 · Zbl 0244.46075 · doi:10.1007/BF01645776
[23] DOI: 10.1007/BF02100032 · Zbl 0743.46080 · doi:10.1007/BF02100032
[24] DOI: 10.1142/S0129055X95000207 · Zbl 0853.46057 · doi:10.1142/S0129055X95000207
[25] DOI: 10.1007/BF00398822 · Zbl 0752.17017 · doi:10.1007/BF00398822
[26] S. L. Woronowicz, Les Houches, Session LXIV, 1995, Quantum Symmetries (Elsevier, 1998) pp. 845–884.
[27] Woronowicz S. L., Int. J. Math. 7 pp 127–
[28] DOI: 10.1142/S0129167X01000836 · Zbl 1060.46515 · doi:10.1142/S0129167X01000836
[29] DOI: 10.1142/S0129055X02001405 · Zbl 1042.46041 · doi:10.1142/S0129055X02001405
[30] DOI: 10.2977/prims/1195167937 · Zbl 0811.17012 · doi:10.2977/prims/1195167937
[31] DOI: 10.2969/jmsj/05240807 · Zbl 0998.46040 · doi:10.2969/jmsj/05240807
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.