×

A classification of coalescent processes for haploid exchangeable population models. (English) Zbl 1013.92029

This paper is concerned with haploid population models in which the population size \(N\) is fixed, and the generations are non-overlapping. For any specific \(r\)-th generation, it is assumed that the family sizes \[ \nu_1^{(r)},\dots,\nu_i^{(r)}, \dots,\nu_N^{(r)}, \] of the offspring of the individuals \(i = 1,\dots,N\), alive in this generation, are exchangeable random variables. After appropriate scaling of the ancestral process, the authors establish a weak convergence criterion for these family sizes as \(N\to \infty\). This allows a full classification of the coalescent generators for exchangeable reproduction.
Apart from the statement of the relevant theorem and its lengthy proof, the paper devotes a section to the particular population model whose time-scaled ancestral process converges to that of the Wright-Fisher model. The authors conclude with a discussion of their results, and provide a useful historical perspective of coalescent processes.

MSC:

92D15 Problems related to evolution
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
60F17 Functional limit theorems; invariance principles
92D25 Population dynamics (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aldous, D. J. (1997). Brownian excursions, critical random graphs and the multiplicative coalescent. Ann. Probab. 25 812-854. · Zbl 0877.60010 · doi:10.1214/aop/1024404421
[2] Aldous, D. J. and Limic, V. (1998). The entrance boundary of the multiplicative coalescent. Electron. J. Probab. 3. · Zbl 0889.60080
[3] Aldous, D. J. and Pitman, J. (1998). The standard additive coalescent. Ann. Probab. 26 1703-1726. · Zbl 0936.60064 · doi:10.1214/aop/1022855879
[4] Bertoin, J. and Le Gall, J.-F. (2000). The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. Probab. Theory Related Fields 117 249-266. · Zbl 0963.60086 · doi:10.1007/s004400000053
[5] Bertoin, J. and Pitman, J. (2000). Two coalescents derived from the ranges of stable subordinators. Electron J. Probab. 5. · Zbl 0949.60034
[6] Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. · Zbl 0172.21201
[7] Bolthausen, E. and Sznitman, A.-S. (1998). On Ruelle’s probability cascades and an abstract cavity method. Comm. Math. Phys. 197 247-276. · Zbl 0927.60071 · doi:10.1007/s002200050450
[8] Cannings, C. (1974). The latent roots of certain Markovchains arising in genetics: a new approach I. Haploid models. Adv. in Appl. Probab. 6 260-290. JSTOR: · Zbl 0284.60064 · doi:10.2307/1426293
[9] Cannings, C. (1975). The latent roots of certain Markovchains arising in genetics: a new approach II. Further haploid models. Adv. in Appl. Probab. 7 264-282. JSTOR: · Zbl 0339.60067 · doi:10.2307/1426077
[10] Donnelly, P. and Tavaré, S. (1995). Coalescents and genealogical structure under neutrality. Ann. Rev. Genet. 29 401-421.
[11] Evans, S. N. and Pitman, J. (1998). Construction of Markovian coalescents. Ann. Inst. H. Poincaré Probab. Statist. 34 339-383. · Zbl 0906.60058 · doi:10.1016/S0246-0203(98)80015-0
[12] Feller, W. (1971). An Introduction to Probability Theory and Its Applications, 1, 2nd ed. Wiley, New York. · Zbl 0219.60003
[13] Hudson, R. R. (1991). Gene genealogies and the coalescent process. Oxford Survey Evol. Biol. 7 1-44. Kingman, J. F. C. (1982a). On the genealogy of large populations. J. Appl. Probab. 19A 27-43. Kingman, J. F. C. (1982b). Exchangeability and the evolution of large populations. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.) 97-112. North- Holland, Amsterdam. Kingman, J. F. C. (1982c). The coalescent. Stochastic Process. Appl. 13 235-248.
[14] Li, W. H. and Fu, Y. X. (1999). Coalescent theory and its applications in population genetics. In Statistics in Genetics (M. E. Halloran and S. Geisser, eds.) Springer, Berlin. · Zbl 0978.62102
[15] Möhle, M. (1998). Robustness results for the coalescent. J. Appl. Probab. 35 438-447. · Zbl 0913.60022 · doi:10.1239/jap/1032192859
[16] Möhle, M. (1999). Weak convergence to the coalescent in neutral population models. J. Appl. Probab. 36 446-460. · Zbl 0938.92024 · doi:10.1239/jap/1032374464
[17] Möhle, M. (2000). Ancestral processes in population genetics: the coalescent. J. Theoret. Biol. 204 629-638.
[18] Möhle, M. and Sagitov, S. (1998). A characterisation of ancestral limit processes arising in haploid population genetics models. Preprint. Johannes Gutenberg-Univ., Mainz.
[19] Nordborg, M. (2001). Coalescent theory. In Handbook of Statistical Genetics (D. J. Balding, C. Cannings and M. Bishop, eds.) Wiley, Chichester. · doi:10.1214/lnms/1215455547
[20] Pitman, J. (1999). Coalescents with multiple collisions. Ann. Probab. 27 1870-1902. · Zbl 0963.60079 · doi:10.1214/aop/1022677552
[21] Sagitov, S. (1999). The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36 1116-1125. · Zbl 0962.92026 · doi:10.1239/jap/1032374759
[22] Schweinsberg, J. (2000a). A necessary and sufficient condition for the 2-coalescent to come down from infinity. Electron. Comm. Probab. 5 1-11. URL: · Zbl 0959.60065
[23] Schweinsberg, J. (2000b). Coalescents with simultaneous multiple collision. Technical Report Electron. J. Probab. 5 . URL: · Zbl 0953.60072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.