×

Higher Schreier theory. (Théorie de Schreier supérieure.) (French) Zbl 0795.18009

A number of authors over the last 30 years have given definitions and interpretations of cohomology with non-abelian coefficients. The primary emphasis of this paper is on the definition of pointed sets which play the role of an \(H^ 3\). A \(gr\)-category is defined to be a monoidal category with an associativity isomorphism satisfying the coherence condition, and such that objects have inverses for the monoidal structure and morphisms have inverses for composition. Automorphisms (resp. self- equivalences) of a \(gr\)-category \({\mathfrak G}\) form a \(gr\)-category \(\operatorname{Aut}{\mathfrak G}\) (resp. \(\text{Eq}({\mathfrak G}))\) which acts on \({\mathfrak G}\); the map \({\mathfrak G}\to\operatorname{Aut}{\mathfrak G}\) is called a crossed square (a crossed square of groups extends the notion of crossed module).
An extension of the \(gr\)-category \({\mathfrak K}\) by \({\mathfrak G}\) is a further \(gr\)-category \({\mathfrak H}\), together with an essentially surjective additive functor \(p:{\mathfrak H}\to{\mathfrak K}\) satisfying the property of lifing morphisms, and with kernel equivalent to \({\mathfrak G}\).
In particular, take \({\mathfrak K}\) to be the category \(\underline K\) with a single object whose morphisms form the group \(K\). Then the set of equivalence classes of extensions of \(\underline K\) by \({\mathfrak G}\) corresponds bijectively to a set \(H^ 1(B\underline K;{\mathfrak G}\to\text{Eq}({\mathfrak G}))\). This example in fact motivates the definition of such \(H^ 1\) groups – detailed formulations in terms of cocyles and equivalence are given.
The author then discusses variants and special cases, e.g., when the associativity isomorphism is the identity. A more substantial case is the study of \(gr\)-fields \({\mathfrak G}\) over a topos \({\mathcal T}\). A field \(C\) over \({\mathcal T}\) is a \({\mathfrak G}\)-bitorsor if composition laws \({\mathfrak G}\times C\to C\), \(C\times{\mathfrak G}\to C\) are given, which satisfy appropriate identities. These are classified by a group \(H^ 0(e,{\mathfrak G}\to\text{Eq}({\mathfrak G}))\). If \(K\) is a group over \({\mathcal T}\), extensions of \(\underline K\) by \({\mathfrak G}\) are classified: formally this is as above.
The paper concludes with a discussion of possible extensions to higher degrees: it seems likely that such will involve crossed cubes etc. and they should relate to homotopy classification of topological fibrations with base a \(K(\pi,1)\).

MSC:

18G50 Nonabelian homological algebra (category-theoretic aspects)
18G55 Nonabelian homotopical algebra (MSC2010)
57T99 Homology and homotopy of topological groups and related structures
20J99 Connections of group theory with homological algebra and category theory
18F99 Categories in geometry and topology
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML

References:

[1] J. BENABOU , Catégories avec multiplication (C. R. Acad. Sc. Paris, vol. 256, 1963 , p. 1887-1890). MR 26 #6225 | Zbl 0111.02201 · Zbl 0111.02201
[2] A. J. BERRICK , Group Extensions and their Trivialisations (L’Enseignement Math., vol. 31, 1985 , p. 151-172). MR 87d:20042 | Zbl 0584.20023 · Zbl 0584.20023
[3] P. BOOTH , P. HEATH , C. MORGAN et R. PICCININI , H-Spaces of Self-Equivalences of Fibrations and Bundles (Proc. London, Math. Soc., vol. 49, 1984 , p. 111-127). MR 85k:55013 | Zbl 0525.55005 · Zbl 0525.55005 · doi:10.1112/plms/s3-49.1.111
[4] L. BREEN , Bitorseurs et cohomologie non-abélienne , dans The Grothendieck Festchrift I (Progress in Mathematics, vol. 86, 1990 , p. 401-476, Birkhäuser). MR 92m:18019 | Zbl 0743.14034 · Zbl 0743.14034
[5] K. S. BROWN , Cohomology of Groups (Graduate Texts in Mathematics, vol. 87, Springer-Verlag, 1982 ). MR 83k:20002 | Zbl 0584.20036 · Zbl 0584.20036
[6] R. BROWN et N. D. GILBERT , Algebraic Models of 3-Types and Automorphism Structures for Crossed Modules (Proc. London Math. Soc., vol. 59, 1989 , p. 51-73). MR 90e:18015 | Zbl 0645.18007 · Zbl 0645.18007 · doi:10.1112/plms/s3-59.1.51
[7] M. BULLEJOS et A. CEGARRA , A 3-Dimensional Non-Abelian Cohomology of Groups with Applications to Homotopy Classification of Continuous Maps (Canad. J. Math., vol. 43, (2), 1991 , p. 1-32). MR 92k:18012 | Zbl 0726.18009 · Zbl 0726.18009 · doi:10.4153/CJM-1991-015-7
[8] D. CONDUCHÉ , Modules croisés généralisés de longueur 2 (J. Pure Applied Alg., vol. 34, 1984 , p. 155-178). MR 86g:20068 | Zbl 0554.20014 · Zbl 0554.20014 · doi:10.1016/0022-4049(84)90034-3
[9] P. DEDECKER , Les foncteurs Ext\pi , H\(^{2}\)\pi et H\(^{2}\)\pi non abélien (C. R. Acad. Sci. Paris., vol. 258, 1964 , p. 4891-4894). MR 29 #5873 | Zbl 0124.01402 · Zbl 0124.01402
[10] P. DEDECKER , Algèbre homologique non-abélienne (Colloque de Topologie Algébrique, Centre Belge de Recherches Mathématiques, Bruxelles, 1964 ). Zbl 0168.26805 · Zbl 0168.26805
[11] P. DEDECKER , Three Dimensional Non Abelian Cohomology Groups , dans Category Theory, Homology Theory and their Applications II (Lecture Notes in Math., vol. 92, 1969 , p. 32-64, Springer-Verlag). MR 41 #8493 | Zbl 0249.18027 · Zbl 0249.18027
[12] P. DELIGNE , La formule de dualité globale , exposé XVIII de SGA 4 (Lecture Notes in Math., vol. 305, Springer-Verlag, 1973 ). MR 50 #7132 | Zbl 0259.14006 · Zbl 0259.14006 · doi:10.1007/BFb0070724
[13] M. DROR et A. ZABRODSKY , Unipotency and Nilpotency in Homotopy Equivalences (Topology, vol. 18, 1979 , p. 187-197). MR 81g:55008 | Zbl 0417.55008 · Zbl 0417.55008 · doi:10.1016/0040-9383(79)90002-8
[14] J. DUSKIN , An Outline of a Theory of Higher Dimensional Descent (Bull. de la Soc. Math. de Belgique (série A), vol. 41, 1989 , p. 249-277). MR 91c:18013 | Zbl 0781.18004 · Zbl 0781.18004
[15] S. EILENBERG et S. MACLANE , Cohomology theory in abstract groups I (Ann. of Math., vol. 47, 1948 , p. 51-78). MR 8,367f | Zbl 0029.34001 · Zbl 0029.34001 · doi:10.2307/1969215
[16] S. EILENBERG et S. MACLANE , On the Groups H(\?, n) I, II (Ann. of Math., vol. 58, 1953 , p. 55-106 et vol. 60, 1954 , p. 49-139). MR 15,54b | Zbl 0055.41704 · Zbl 0055.41704 · doi:10.2307/1969702
[17] G. ELLIS et R. STEINER , Higher Dimensional Crossed Modules and the Homotopy Groups of (n + 1)-ads (J. Pure Appl. Algebra, vol. 46, 1987 , p. 117-136). MR 88j:55010 | Zbl 0622.55010 · Zbl 0622.55010 · doi:10.1016/0022-4049(87)90089-2
[18] J. GIRAUD , Cohomologie non abélienne (Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 179, Springer-Verlag, 1971 ). MR 49 #8992 | Zbl 0226.14011 · Zbl 0226.14011
[19] A. GROTHENDIECK , Biextensions de faisceaux de groupes , exposé VII de SGA7I, Groupes de monodromie en géométrie algébrique (Lecture notes in Math., vol. 288, Springer-Verlag, 1972 ). MR 50 #7134 | Zbl 0247.14011 · Zbl 0247.14011
[20] M. HAKIM , Topos annelé et schémas relatifs (Ergebnisse der Math. und ihrer Grenzgebiete, vol. 64, Springer Verlag, 1972 ). MR 51 #500 | Zbl 0246.14004 · Zbl 0246.14004
[21] R. O. HILL Jr. , Moore-Postnikov Towers for Fibrations in which \pi 1 (fiber) is Non-Abelian (Pacific J. Math., vol. 62, 1976 , p. 141-148). Article | Zbl 0328.55013 · Zbl 0328.55013 · doi:10.2140/pjm.1976.62.141
[22] D. F. HOLT , An Interpretation of the Cohomology Groups Hn(G, A) (J. Algebra, vol. 60, 1979 , p. 307-320). MR 80m:20040 | Zbl 0699.20040 · Zbl 0699.20040 · doi:10.1016/0021-8693(79)90084-X
[23] J. HUEBSCHMANN , Crossed n-fold Extensions of Groups and Cohomology (Comment. Math. Helvetici, vol. 55, 1980 , p. 302-314). MR 82e:20063 | Zbl 0443.18019 · Zbl 0443.18019 · doi:10.1007/BF02566688
[24] L. ILLUSIE , Complexe cotangent et déformations I, II (Lecture notes in Math., vol. 239, 283, Springer-Verlag, 1971 , 1972 ). MR 58 #10886a | Zbl 0224.13014 · Zbl 0224.13014 · doi:10.1007/BFb0059052
[25] A. JOYAL et R. STREET , Braided Monoidal Categories , Preprint.
[26] G. M. KELLEY et M. LAPLAZA , Coherence for Compact Closed Categories (Lecture notes in Math., vol. 281, Springer-Verlag, 1972 ). · Zbl 0447.18005
[27] A. LEGRAND , Homotopie des espaces de sections (Lecture notes in Math., vol. 941, Springer-Verlag, 1982 ). MR 83m:55028 | Zbl 0535.55001 · Zbl 0535.55001
[28] J.-L. LODAY , Spaces with Finitely Many Non Trivial Homotopy Groups (J. Pure and Appl. Alg., vol. 24, 1982 , p. 179-202). MR 83i:55009 | Zbl 0491.55004 · Zbl 0491.55004 · doi:10.1016/0022-4049(82)90014-7
[29] S. MACLANE , Natural Associativity and Commutativity (Rice University Studies, vol. 49, 1963 , p. 28-46), reproduit dans les Selected Papers, I. KAPLANSKY éd., Springer Verlag, 1979 . MR 30 #1160 | Zbl 0244.18008 · Zbl 0244.18008
[30] S. MACLANE , Categories for the Working Mathematician (Graduate texts in Mathematics, vol. 5, Springer-Verlag, 1972 ).
[31] J. P. MAY , Simplicial Objects in Algebraic Topology , Van Nostrand, 1967 . MR 36 #5942 | Zbl 0165.26004 · Zbl 0165.26004
[32] J. P. MAY , E\infty -Spaces, Group Completions and Permutative Categories , dans New Developments in Topology, G. SEGAL éd., (London Math. Soc. Lecture note series, vol. 11, 1974 , p. 61-93, Cambridge University Press). MR 49 #3915 | Zbl 0281.55003 · Zbl 0281.55003
[33] J. P. MAY , Classifying Spaces and Fibrations (Memoirs of the A.M.S., vol. 155, 1975 ). MR 51 #6806 | Zbl 0321.55033 · Zbl 0321.55033
[34] I. MOERDIJK , Morita Equivalence for Continuous Groups (Math. Proc. Cambr. Phil. Soc., vol. 103, 1988 , p. 97-115). MR 88j:22001 | Zbl 0648.22001 · Zbl 0648.22001 · doi:10.1017/S0305004100064665
[35] G. MOORE et N. SEIBERG , Classical and Quantum Field Theory , (Comm. Math. Phys., vol. 123, 1989 , p. 177-254). Article | MR 90e:81216 | Zbl 0694.53074 · Zbl 0694.53074 · doi:10.1007/BF01238857
[36] K. NORRIE , Actions and Automorphisms of Crossed Modules (Bull. S.M.F., vol. 118, 1989 , p. 101-119). Numdam | MR 91m:18010 | Zbl 0719.20018 · Zbl 0719.20018
[37] R. A. PICCINNINI éd., Groups of Self-Equivalences and Related Topics (Lecture notes in Math., vol. 1425, Springer-Verlag, 1990 ). MR 91e:55001 | Zbl 0695.00020 · Zbl 0695.00020 · doi:10.1007/BFb0083825
[38] N. SAAVEDRA RIVANO , Catégories tannakiennes (Lecture notes in Math., vol. 265, Springer-Verlag, 1972 ). MR 49 #2769 | Zbl 0241.14008 · Zbl 0241.14008
[39] J. E. ROBERTS , Mathematical Aspects of Local Cohomology (Colloquium on Operator Algebras and their Applications to Mathematical Physics, Colloque International C.N.R.S., vol. 274, Marseille, 1977 ). MR 81e:18017 | Zbl 0455.55005 · Zbl 0455.55005
[40] O. SCHREIER , Uber die Erweiterung von Gruppen I (Monatsh. Math. Phys., vol. 34, 1926 , p. 165-180) ; II. (Abh. Math. Sem. Hamburg, vol. 4, 1926 , p. 321-346). JFM 52.0113.04 · JFM 52.0113.04
[41] G. SEGAL , Cohomology of Topological Groups (Symposia Mat. IV, 1970 , p. 377-387, Istituto Nazionale di Alta Matematic, Bologna). MR 43 #6292 | Zbl 0223.57034 · Zbl 0223.57034
[42] J.-P. SERRE , Groupes algébriques et corps de classe (Actualités scientifiques et Industrielles, Hermann, 1959 ). MR 21 #1973 | Zbl 0097.35604 · Zbl 0097.35604
[43] HOANG XUAN SINH , Gr-catégories (thèse de doctorat, Université Paris-VII, 1975 ).
[44] J. STASHEFF , Homotopy Associativity of H-Spaces I (Trans. A.M.S., vol. 108, 1963 , p. 275-292). MR 28 #1623 | Zbl 0114.39402 · Zbl 0114.39402 · doi:10.2307/1993608
[45] J. STASHEFF , H-Spaces from a Homotopy Point of View (Lecture Notes in Math., vol. 161, Springer-Verlag, 1970 ). MR 42 #5261 | Zbl 0205.27701 · Zbl 0205.27701
[46] J. STASHEFF , H-Spaces and Classifying Spaces : Foundations and Recent Developments , dans Algebraic Topology (Proc. Symp. Pure Math., vol. 22, 1971 , p. 247-272, A.M.S.). MR 47 #9612 | Zbl 0234.55020 · Zbl 0234.55020
[47] K. ULBRICH , Group Cohomology for Picard Categories (J. Alg., vol. 91, 1984 , p. 464-498). MR 86h:18003 | Zbl 0554.18005 · Zbl 0554.18005 · doi:10.1016/0021-8693(84)90114-5
[48] D. YETTER , Category Theoretic Representations of Knotted Graphs in S3 [Advances in Mathematics (à paraître)]. · Zbl 0679.57002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.