×

Existence of a solution to a coupled elliptic system. (English) Zbl 0791.35043

Suppose \(\Omega\) is a bounded regular domain of \(\mathbb{R}^ N\), \(N>1\), \(\partial\Omega\) its boundary, \(\sigma\), \(\lambda\) and \(f\) are bounded functions from \(\Omega\times\mathbb{R}\) to \(\mathbb{R}\), continuous with respect to \(y\in\mathbb{R}\) for a.e. \(x\in\Omega\), and measurable with respect to \(x\in\Omega\) for any \(y\in\mathbb{R}\), and such that: \[ \exists\alpha>0;\quad \alpha\leq \sigma(\cdot,y) \text{ and } \alpha\leq \lambda(\cdot,y), \qquad \forall y\in\mathbb{R}, \quad \text{for a.e. } x\in\Omega. \] The aim of this work is to prove the following existence theorem: Theorem. Under the above assumptions, there exists a solution \((u,\varphi)\) satisfying: \[ u\in \textstyle {\bigcap_{p<{N\over {N-1}}}} W_ 0^{1,p}(\Omega), \qquad \varphi\in H_ 0^ 1(\Omega) \]
\[ \begin{aligned} \int_ \Omega &\sigma (x,u(x)) D\varphi(x) D\psi(x)dx= \int_ \Omega f(x,u(x))\psi(x)dx,\qquad \forall\psi\in H_ 0^ 1 (\Omega),\\ \int_ \Omega &\lambda(x,u(x)) Du(x) Dv(x)dx= \int_ \Omega \sigma(x,u(x)) D\varphi(x) D\varphi(x)v(x)dx, \quad \forall v\in \bigcup_{q>N} W_ 0^{1,q}(\Omega).\end{aligned} \] {}.

MSC:

35J65 Nonlinear boundary value problems for linear elliptic equations
35D05 Existence of generalized solutions of PDE (MSC2000)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ferguson, J. R.; Fiard, J. M.; Herbin, R., A two-dimensional simulation of a solid oxide fuel cell, International Energy Agency Workshop: Fundamental Barriers to SOFC Performance (1992), Lausanne, Switzerland
[2] J.M. Fiard and R. Herbin, Comparison between finite volume and finite element methods for an elliptic system arising in electrochemical engineering, Comput. Meths. Appl. Mech. Engin.; J.M. Fiard and R. Herbin, Comparison between finite volume and finite element methods for an elliptic system arising in electrochemical engineering, Comput. Meths. Appl. Mech. Engin.
[3] S. Clain, J. Rappaz, M. Swierkosz and R. Touzani, Numerical modelling of induction heating for two- dimentional geometries, M3AS; S. Clain, J. Rappaz, M. Swierkosz and R. Touzani, Numerical modelling of induction heating for two- dimentional geometries, M3AS · Zbl 0801.65120
[4] S. Clain, Etude mathématique et numérique de processus de chauffage par induction, Doctoral Thesis, Ecole Polytechnique Fédérale de Lausanne (in preparation).; S. Clain, Etude mathématique et numérique de processus de chauffage par induction, Doctoral Thesis, Ecole Polytechnique Fédérale de Lausanne (in preparation).
[5] Boccardo, L.; Gallouët, T., Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87, 1, 149-169 (1989) · Zbl 0707.35060
[6] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariépy, M. Pierre and J.L. Vasquez, An \(L^1\); P. Bénilan, L. Boccardo, T. Gallouët, R. Gariépy, M. Pierre and J.L. Vasquez, An \(L^1\)
[7] Serrin, J., Pathological solutions of elliptic differential equations, Ann. Scuola Norm. Pisa, 18, 385-387 (1964) · Zbl 0142.37601
[8] Dall’Aglio, A., Alcuni problem: relativi alla H-convergenza di equazioni ellittiche e paraboliche quasilineari, Doctoral Thesis (1992), Rome
[9] P.L. Lions and F. Murat, (personal communication).; P.L. Lions and F. Murat, (personal communication).
[10] Bensoussan, A.; Lions, J. L.; Papanicolaou, G., Asymptotic Analysis for Periodic Structures (1978), North-Holland · Zbl 0411.60078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.