×

Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. (English) Zbl 0783.35020

Let \(\Omega\) be a bounded open set of \(\mathbb{R}^ N\), \(1<p\), \(p'<\infty\), \(1/p+1/p'=1\). Consider the nonlinear elliptic equations \[ -\text{div} a(x,u_ n,Du_ n)=f_ n+ g_ n \quad \text{in } {\mathcal D}'(\Omega) \tag{1} \] where \(a:\Omega \times \mathbb{R} \times \mathbb{R}^ N \to \mathbb{R}^ N\) is a Carathéodory function satisfying the classical Leray-Lions hypotheses. Assume that \(u_ n\rightharpoonup u\) weakly in \(W^{1,p}(\Omega)\), strongly in \(L^ p_{\text{loc}}(\Omega)\) and a.e. in \(\Omega\), and \(f_ n \to f\) strongly in \(W^{-1,p'} (\Omega)\). Moreover, assume that \(g_ n \in W^{-1,p'}(\Omega)\) is bounded in the space \({\mathcal M}(\Omega)\) of Radon measures.
In the present paper, the authors prove that \(Du_ n \to Du\) strongly in \(\bigl( L^ q(\Omega) \bigr)^ N\) for any \(q<p\). This implies that, for a suitable subsequence \(n'\), \(Du_{n'} \to Du\) a.e. in \(\Omega\) (cf. the title of the paper) and, moreover, that it is allowed to pass to the limit in (1) such that \(-\text{div} a(x,u,Du) = f+g\) in \({\mathcal D}'(\Omega)\).
Besides, under the stronger hypotheses \(a(x,s,\zeta) \zeta \geq \alpha | \zeta |^ p\) for some \(\alpha>0\) (a.e. \(x \in \Omega\), and \(s \in \mathbb{R}\), \(\zeta \in \mathbb{R}^ N\) arbitrary) and \(g_ n \rightharpoonup g\) weakly in \(L^ 1(\Omega)\), they show that, for any fixed \(k>0\), the truncation \(T_ k\) of \(u_ n\) at height \(k\) satisfies \(DT_ k(u_ n) \to DT_ k(u)\) strongly in \(\bigl( L^ p_{\text{log}} (\Omega) \bigr)^ N\). Under suitably modified assumptions, corresponding results are obtained also in the parabolic case, i.e., when (1) is replaced by \[ \partial u_ n/ \partial t-\text{div} a(x,t,u_ n,Du_ n)=f_ n+g_ n \quad \text{in } {\mathcal D}'\bigl( \Omega \times(0,T)\bigr)\;(T>0 \text{ fixed}). \]

MSC:

35J60 Nonlinear elliptic equations
35K55 Nonlinear parabolic equations
35B99 Qualitative properties of solutions to partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Boccardo, L.; Murat, F.; Puel, J.-P., Existence de solutions non bornées pour certaines équations quasilinéaires, Portugaliae Math., 41, 507-534 (1982) · Zbl 0524.35041
[2] Meyers, N. G., An \(L^p\)-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scu. norm. sup. Pisa, 17, 189-206 (1963) · Zbl 0127.31904
[3] Murat, F., L’injection du cône positif de \(H^{-1}\) dans \(W^{-1,q}\) est compacte pour tout \(q < 2\), J. Math. pures appl., 60, 309-322 (1981) · Zbl 0471.46020
[4] Frehse, J., A refinement of Rellich’s Theorem, Rend. Mat., 5, 229-242 (1985) · Zbl 0666.46041
[5] Landes, R., On the existence of weak solutions of perturbed systems with critical growth, J. reine angew. Math., 393, 21-38 (1989) · Zbl 0664.35027
[6] Boccardo, L.; Murat, F., Strongly nonlinear Cauchy problems with gradient dependent lower order nonlinearity, (Benilan, P.; Chipot, M.; Evans, L. C.; Pierre, M., Recent Advances in Nonlinear Elliptic and Parabolic Problems. Recent Advances in Nonlinear Elliptic and Parabolic Problems, Pitman Research Notes in Mathematics, Vol. 208 (1989), Longman: Longman Harlow), 247-254 · Zbl 0703.35094
[7] Boccardo, L.; Gallouet, T., Nonlinear elliptic and parabolic equations involving measure data, J. funct. Analysis, 87, 149-169 (1989) · Zbl 0707.35060
[8] Boccardo, L.; Giachetti, D.; Murat, F., A generalization of a theorem of H. Brezis & F.E. Browder and applications to some unilateral problems, Ann. Inst. Poincaré, Analyse non Lin., 7, 367-384 (1990) · Zbl 0716.46032
[9] Del Vecchio, T., Strongly nonlinear problems with Hamiltonian having natural growth, Houston J. Math., 16 (1990) · Zbl 0714.35035
[10] Landes, R., Solvability of perturbed elliptic equations with critical growth exponent for the gradient, J. math. Analysis Applic., 139, 63-77 (1989) · Zbl 0691.35038
[11] Hedbergurat; Hedbergurat
[12] Leray, J.; Lions, J.-L., Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. math. Fr., 93, 97-107 (1965) · Zbl 0132.10502
[13] Lions, J.-L., Quelques Méthodes de Résolution des Problémes aux Limites Nonlinéaires (1969), Dunod & Gauthier-Villars: Dunod & Gauthier-Villars Paris · Zbl 0189.40603
[14] Cioranescu, D.; Murat, F., Un terme étrange venu d’ailleurs, (Brezis, H.; Lions, J.-L., Nonlinear Partial Differential Equations and Their Applications, Collége de France Seminar. Nonlinear Partial Differential Equations and Their Applications, Collége de France Seminar, Research Notes in Mathematics, Vols 60 & 70 (1982), Pitman: Pitman London). (Brezis, H.; Lions, J.-L., Nonlinear Partial Differential Equations and Their Applications, Collége de France Seminar. Nonlinear Partial Differential Equations and Their Applications, Collége de France Seminar, Research Notes in Mathematics, Vols 60 & 70 (1982), Pitman: Pitman London), 154-178, Vols 2 & 3 · Zbl 0496.35030
[15] \(B \textsc{ensoussan}\textsc{occardo}\textsc{urat}H\); \(B \textsc{ensoussan}\textsc{occardo}\textsc{urat}H\)
[16] Browder, F. E., Existence theorems for nonlinear partial differential equations, (Chern, S. S.; Smale, S., Proc. Symp. Pure Math. (1970), American Mathematical Society: American Mathematical Society Providence, Rhode Island), 1-60 · Zbl 0212.27704
[17] Boccardo, L.; Murat, F.; Puel, J.-P., Existence of bounded solutions for nonlinear elliptic unilateral problem, Ann. Mat. pura Appl., 152, 183-196 (1988) · Zbl 0687.35042
[18] Boccardo, L.; Giachetti, D., Strongly nonlinear unilateral problems, Appl. Math. Opt., 9, 291-301 (1983) · Zbl 0535.49010
[19] Simon, J., Compact sets in the space \(L^p}(0, T; B)\), Ann. Mat. pura Appl., 146, 65-96 (1987) · Zbl 0629.46031
[20] Boccardo, L.; Murat, F.; Puel, J.-P., Existence results for some quasilinear parabolic equations, Nonlinear Analysis, 13, 373-392 (1989) · Zbl 0705.35066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.