×

Rectifiable sets and the traveling salesman problem. (English) Zbl 0731.30018

The author shows that a bounded set K (\(\subset {\mathbb{C}})\) is contained in a rectifiable curve if and only if \[ \sum \{\frac{\omega (Q)}{\ell (Q)}\}^ 2 \ell (Q)<\infty. \] Here the summation is taken over all dyadic squares Q, \(\ell (Q)\) denotes the sidelength of \({\mathbb{Q}}\) and \(\omega\) (Q) is the width of an infinite strip \(S_ Q\) with smallest possible width such that \(S_ Q\supset K\cap 3Q\). This assertion is very deep and applicable to study various problems concerning harmonic measure and the Cauchy integral on curves.
Reviewer: T.Murai (Nagoya)

MSC:

30C85 Capacity and harmonic measure in the complex plane
90C35 Programming involving graphs or networks
90C27 Combinatorial optimization
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Bishop, C.J., Jones, P.W.: Harmonic measure and arclength. Ann. Math. (to appear) · Zbl 0726.30019
[2] Calder?n, A.P.: Cauchy integrals on Lipschitz curves and related operators. Proc. Natl. Acad. Sci. U.S.A.74, 1324-1327 (1977) · Zbl 0373.44003 · doi:10.1073/pnas.74.4.1324
[3] Coifman, R.R., McIntosh, A., Meyer, Y.: L’int?grale de Cauchy d?finit un op?rateur born? sur L2 pour les courbes Lipschitziennes. Ann. Math.116, 361-368 (1982) · Zbl 0497.42012 · doi:10.2307/2007065
[4] Falconer, K.J.: The geometry of fractal sets, Cambridge University Press, 1985 · Zbl 0587.28004
[5] Federer, H.: Geometric measure theory. Berlin Heidelberg New York: Springer 1969 · Zbl 0176.00801
[6] Garnett, J.B.: Analytic capacity and measure (Lect. Notes Math. vol. 297) Berlin Heidelberg New York: Springer 1972 · Zbl 0253.30014
[7] Garnett, J.B.: Bounded analytic functions. Academic Press, 1981 · Zbl 0469.30024
[8] Jerison, D.S., Kenig, C.E.: Hardy spaces,A ? , and singular integrals on chord-arc domains. Math. Scand.50, 221-248 (1982) · Zbl 0509.30025
[9] Jones, P.W.: Square functions, Cauchy integrals, analytic capacity, and harmonic measure. (Lect. Notes Math, vol. 1384, pp. 24-68) Berlin Heidelberg New York: Springer 1989 · Zbl 0675.30029
[10] Jones, P.W.: Lipschitz and bi-Lipschitz functions. Revista Ibero-Americana4, 155-121 (1988)
[11] Jones, P.W., Murai, T.: Positive analytic capacity but zero Buffon needle probability. Pac. J. Math.133, 99-114 (1988) · Zbl 0653.30016
[12] Koosis, P.: Introduction to H p spaces. Lond. Math. Soc., Lecture Note Series, vol. 40, 1980 · Zbl 0435.30001
[13] Lawler, E.L.: The Traveling Salesman Problem. New York: Wiley-Interscience, 1985 · Zbl 0563.90075
[14] Mattila, P.: Smooth maps, null-sets for integral geometric measure and analytic capacity. Ann. Math.123, 303-309 (1986) · Zbl 0589.28006 · doi:10.2307/1971273
[15] Murai, T.: A real variable method for the Cauchy transform and analytic capacity. (Lect. Notes Math., vol. 1307) Berlin Heidelberg New York: Springer 1988 · Zbl 0645.30016
[16] Pommerenke, Ch.: Univalent functions. Vanderhoeck and Ruprecht, G?ttingen, 1975
[17] Preparata, F.P., Shamos, M.I.: Computational Geometry. Berlin Heidelberg New York: Springer 1985 · Zbl 0575.68059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.