×

A cohomological construction of Swan representation over the Witt ring. I, II. (English) Zbl 0699.14026

From the introduction: Let \(K\) be a complete discrete valuation field with residue field \(k\). We assume \(k\) is a perfect field of characteristic \(p>0\). For a finite Galois extension \(M/K\) with Galois group \(G\), the Swan character \(\text{Sw}_ G: G\to\mathbb Z\) is defined as follows: \(\text{Sw}_ G(\sigma)=(1-v_ M(\sigma (\pi_ M)-\pi_ M))\cdot f\) for \(1\neq \sigma \in I\), \(\text{Sw}_ G(\sigma)=0\) for \(\sigma\) \(\not\in I\), \(\text{Sw}_ G(1)=-\sum_{1\neq \sigma \in G}\text{Sw}_ G(\sigma) \).
Here \(I\) denotes the inertia group, \(\pi_ M\) a prime element of \(M\), \(v_ M\) the normalized valuation of \(M\) and \(f\) the degree of the residue field extension. Then it is a classical result that \(\text{Sw}_ G\) is a character of a linear representation of \(G\) and that it can be defined over the \(\ell\)-adic field \(\mathbb Q_{\ell}\) \((\ell \neq p)\) (respectively the fraction field of the Witt ring \(W(k)\)). We call it the Swan representation of \(G\) and denote it by \(\text{Sw}_{G,\ell}\) (resp. \(\text{Sw}_{G,p}).\)
In this note we construct \(\text{Sw}_{G,p}\) cohomologically (or geometrically) when \(K\) is of equal characteristic \(p\). We use a new theory of de Rham-Witt complex with logarithmic poles, which supplies us nice \(p\)-adic cohomology for open varieties.
The content of this note is as follows. In part I (= §1-2) we introduce the de Rham-Witt complex with logarithmic poles, and construct \(\text{Sw}_{G,p}\) in part II (= §3).

MSC:

14F30 \(p\)-adic cohomology, crystalline cohomology
12G05 Galois cohomology
13F35 Witt vectors and related rings
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G. Faltings: F-isocrystals on open varieties. Results and conjectures (1988) (preprint). · Zbl 0736.14004
[2] J.-M. Fontaine: Groupes de ramification et representations d’Artin. Ann. Sci. Ecole Norm Sup., 4, 337-392 (1971). · Zbl 0232.12006
[3] H. Gillet and W. Messing: Cycle classes and Riemann-Roch for crystalline cohomology. Duke Math. J., 55, 501-538 (1987). · Zbl 0651.14014 · doi:10.1215/S0012-7094-87-05527-X
[4] A. Grothendieck (redige par I. Bucur) : Formule d’Euler-Poincare en cohomologie etale. SGA 5, Springer LNM n^\circ 589, pp. 372-406 (1977). · Zbl 0356.14005
[5] L. Illusie et M. Raynaud: Les suites spectrales associees au complexe de de Rham-Witt. Publ. Math. IHES, 57, 73-212 (1983). · Zbl 0538.14012 · doi:10.1007/BF02698774
[6] K. Kato: The limit Hodge structures in the mixed characteristic case. Manuscript (1988).
[7] N. M. Katz: Local-to-global extensions of representations of fundamental groups. Ann. Inst. Fourier, 36, 69-106 (1986). · Zbl 0564.14013 · doi:10.5802/aif.1069
[8] J.-P. Serre: Sur la rationalite des representations d’Artin. Ann. of Math., 72, 406-420. · Zbl 0202.32803 · doi:10.2307/1970142
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.