×

Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity. (English) Zbl 0619.35088

We prove the local existence of smooth solutions for the Vlasov-Maxwell equations in three space variables. The existence time for such solutions is independant of the light velocity c. Then we derive regularity results for both the Vlasov-Poisson and the Vlasov-Maxwell equations. The last part of the paper is devoted to a proof of weak and strong convergence of the Vlasov-Maxwell equations towards the Vlasov-Poisson equations, when the light velocity c goes to infinity.

MSC:

35Q99 Partial differential equations of mathematical physics and other areas of application
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35A07 Local existence and uniqueness theorems (PDE) (MSC2000)
41A60 Asymptotic approximations, asymptotic expansions (steepest descent, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arsenev, Global existence of a weak solution of Vlasov’s system of equations, USSR comput. Math. and Math. Phys. 15 pp 131– (1975) · doi:10.1016/0041-5553(75)90141-X
[2] Iordanskit, The Cauchy problem for the kinetic equation of Plasma, Amer. Math. Soc. Trans. Ser. 2- 35 pp 351– (1964) · Zbl 0127.21902 · doi:10.1090/trans2/035/12
[3] Ukai, On the classical solution in the large in time of the two dimensional Vlasov equations. Osaka, J. of Math. 15 pp 245– (1978)
[4] Horst, On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation, Math. Meth in the Appl. Sci. 3 pp 229– (1981) · Zbl 0463.35071 · doi:10.1002/mma.1670030117
[5] Illner, An existence theorem for the unmodified Vlasov Equation, Math. Meth. in the Appl. Sci. 1 pp 530– (1979) · Zbl 0415.35076 · doi:10.1002/mma.1670010410
[6] Bardos , C. Degond , P. Centre de Maths. Appliquées Ecole Polytechnique Palaiseau (France)
[7] Wollman , S. Existence and uniqueness theory of The Vlasov equation. Internal report; Courant Institute of Math. Science, New-York (oct. 82) · Zbl 0645.35013
[8] Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rat. Mech. Anal. 58 pp 181– (1975) · Zbl 0343.35056 · doi:10.1007/BF00280740
[9] Klainerman, Compressible and incompressible fluids, C. P. A. M. 35 pp 629– (1982)
[10] Added , S. Equations du plasma de Langmuir et équation de schrödinger non linéaire, régularité et approximation.
[11] Klainerman, Global existence for non linear wave equations, C. P. A. M. 33 pp 43– (1980) · Zbl 0405.35056
[12] Klainerman, Global small amplitude solutions to non linear evolution equations, C. P. A. M. · Zbl 0509.35009
[13] Asano , K. On local solutions of the initial value problems for the Vlasov-Maxwell equation. · Zbl 0631.76090
[14] Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires (1969)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.