×

The Becker-Döring cluster equations: Basic properties and asymptotic behaviour of solutions. (English) Zbl 0594.58063

From the summary: ”Existence and uniqueness results are established for solutions to the Becker-Döring cluster equations. The density \(\rho\) is shown to be a conserved quantity. Under hypotheses applying to a model of a quenched binary alloy the asymptotic behaviour of solutions with rapidly decaying initial data is determined.”
Reviewer: G.Warnecke

MSC:

58J90 Applications of PDEs on manifolds
70F99 Dynamics of a system of particles, including celestial mechanics
34D05 Asymptotic properties of solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abraham, F.: Homogeneous nucleation theory. New York: Academic Press 1974
[2] Aizenman, M., Bak, T.A.: Convergence to equilibrium in a system of reacting polymers. Commun. Math. Phys.65, 203-230 (1979) · Zbl 0458.76062 · doi:10.1007/BF01197880
[3] Andrews, G., Ball, J.M.: Asymptotic behaviour and changes of phase in one-dimensional nonlinear viscoelasticity. J. Differ. Equations44, 306-341 (1982) · Zbl 0501.35011 · doi:10.1016/0022-0396(82)90019-5
[4] Arnold, V.I.: On an a priori estimate in the theory of hydrodynamic stability. Am. Math. Soc. Transl.79, 267-269 (1969)
[5] Ball, J.M.: On the asymptotic behaviour of generalized processes, with applications to nonlinear evolution equations. J. Differ. Equations27, 224-265 (1978); Existence of solutions in finite elasticity. In: Proc. IUTAM symp. on finite elasticity. Carlson, D.E., Shield, R.T. (eds.). The Hague: Martinus Nijhoff 1981; Material instabilities and the calculus of variations. In: Phase transformations and material instabilities in solids. Gurtin, M.E. (ed.). New York: Academic Press 1984 · Zbl 0376.35002 · doi:10.1016/0022-0396(78)90032-3
[6] Ball, J.M., Marsden, J.E.: Quasiconvexity at the boundary, positivity of the second variation and elastic stability. Arch. Rat. Mech. Anal.86, 251-277 (1984) · Zbl 0552.73006 · doi:10.1007/BF00281558
[7] Barbashin, E.A.: On the theory of generalized dynamical systems. Moskov. Gos. Ped. Inst. U?en. Zap.2, 110-133 (1948); English translation by U.S. Department of Commerce, Office of Technical Services, Washington D.C. 20235
[8] Becker, R., Döring, W.: Kinetische Behandlung der Keimbildung in übersättigten Dämpfern. Ann. Phys. (Leipzig)24, 719-752 (1935) · Zbl 0013.14002 · doi:10.1002/andp.19354160806
[9] Binder, K.: Theory for the dynamics of ?clusters?. II. Critical diffusion in binary systems and the kinetics of phase separation. Phys. Rev. B15, 4425-4447 (1977)
[10] Buhagiar, A.: Ph. D Thesis, Open University 1981
[11] Dickman, R., Schieve, W.C.: Proof of the existence of the cluster free energy. J. Stat. Phys.36, 435-446 (1984) · doi:10.1007/BF01010990
[12] Drake, R.: In: Topics in current aerosol research. International reviews in aerosol physics and chemistry, Vol. 2. Hidy, G.M., Brock, J.R. (eds.). Oxford: Pergamon Press 1972
[13] Dunford, N., Schwartz, J.T.: Linear operators, Part I. New York: Interscience 1958 · Zbl 0084.10402
[14] Friedlander, S.K.: On the particle size spectrum of a condensing vapour. Phys. Fluids3, 693-696 (1960) · doi:10.1063/1.1706112
[15] Hale, J.K.: Dynamical systems and stability. J. Math. Anal. Appl.26, 39-59 (1969) · Zbl 0179.13303 · doi:10.1016/0022-247X(69)90175-9
[16] Hendricks, E.M., Ernst, M.H., Ziff, R.M.: Coagulation equations with gelation. J. Stat. Phys.31, 519-563 (1983) · doi:10.1007/BF01019497
[17] Holm, D.D., Marsden, J.E., Ratiu, T., Weinstein, A.: Non-linear stability conditions and a priori estimates for barotropic hydrodynamics. Phys. Lett.98 A, 15-21 (1983)
[18] Hartman, P.: Ordinary differential equations. New York: Wiley 1964; reprinted Boston: Birkhäuser 1982 · Zbl 0125.32102
[19] Kalos, M., Lebowitz, J.L., Penrose, O., Sur, A.: Clusters, metastability, and nucleation: kinetics of first-order phase transitions. J. Stat. Phys.18, 39-52 (1978) · doi:10.1007/BF01014669
[20] Knops, R.J., Payne, L.E.: On potential wells and stability in nonlinear elasticity. Math. Proc. Camb. Phil. Soc.84, 177-190 (1978) · Zbl 0384.73026 · doi:10.1017/S0305004100055006
[21] Leyvraz, F., Tschudi, H.R.: Singularities in the kinetics of coagulation processes. J. Phys. A: Math. Gen.14, 3389-3405 (1981) · Zbl 0481.92020 · doi:10.1088/0305-4470/14/12/030
[22] Lieb, E.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys.53, 603-641 (1981) · Zbl 1114.81336 · doi:10.1103/RevModPhys.53.603
[23] Lifshitz, I.M., Slyozov, V.V.: J. Phys. Chem. Solids19, 35-50 (1961) · doi:10.1016/0022-3697(61)90054-3
[24] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case, Part 1. Ann. Inst. Henri Poincaré1, 109-145 (1984) · Zbl 0541.49009
[25] McLeod, J.B.: On an infinite set of non-linear differential equations. Q. J. Math. Oxf. Ser. (2)13, 119-128 (1962a); On an infinite set of non-linear differential equations. Q. J. Math. Oxf. Ser. (2)13, 193-205 (1962b); On a recurrence formula in differential equations. Q. J. Math. Oxf. Ser. (2)13, 283-284 (1962c) · Zbl 0109.31501 · doi:10.1093/qmath/13.1.119
[26] Melzak, Z.: A scalar transport equation. Trans. Am. Math. Soc.85, 547-560 (1957) · Zbl 0077.30505 · doi:10.1090/S0002-9947-1957-0087880-6
[27] Pego, R.: Phase transitions: stability and admissibility in one dimensional nonlinear viscoelasticity. Arch. Rat. Mech. Anal. (to appear) · Zbl 0656.73023
[28] Penrose, O., Buhagiar, A.: Kinetics of nucleation in a lattice gas model: Microscopic theory and simulation compared. J. Stat. Phys.30, 219-241 (1983) · doi:10.1007/BF01010876
[29] Penrose, O., Lebowitz, J.L.: Towards a rigorous theory of metastability. In: Studies in statistical mechanics, Vol. VII. Fluctuation phenomena. Montroll, E.W., Lebowitz, J.L. (eds.). Amsterdam: North-Holland 1979
[30] Penrose, O., Lebowitz, J., Marro, J., Kalos, M., Tobochnik, J.: Kinetics of a first-order phase transition: Computer simulations and theory. J. Stat. Phys.34, 399-426 (1984) · doi:10.1007/BF01018552
[31] Reuter, G.E.H., Ledermann, W.: On the differential equations for the transition probabilities of Markov processes with enumerably many states. Proc. Camb. Phil. Soc.49, 247-262 (1953) · Zbl 0053.27202 · doi:10.1017/S0305004100028346
[32] von Smoluchowski, M.: Versuch einer mathematischen Theorie der kolloiden Lösungen. Z. Phys. Chem.92, 129-168 (1917)
[33] Spouge, J.L.: An existence theorem for the discrete coagulation-fragmentation equations. Math. Proc. Camb. Phil. Soc.96, 351-357 (1984) · Zbl 0541.92029 · doi:10.1017/S0305004100062253
[34] Young, L.C.: Lectures on the calculus of variations and optimal control theory. Philadelphia: Saunders reprinted by Chelsea 1969
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.